Advertisement

Steady and Transient State Analyses on Conjugate Laminar Forced Convection Heat Transfer

  • Asif Afzal
  • A. D. Mohammed Samee
  • R. K. Abdul Razak
  • M. K. RamisEmail author
Original Paper
  • 49 Downloads

Abstract

The term ‘conjugate heat transfer’ refers to a heat transfer process involving an interaction of heat conduction within a solid body with either of the free, forced, and mixed convection from its surface to a fluid flowing over it. It finds application in numerous fields starting from thermal interaction between surrounding air and fins to thermal interaction between flowing fluid and turbine blades. In this article, a systematic literature review of studies pertinent to laminar conjugate conduction-forced convection heat transfer analysis subjected to internal and external flow conditions is performed. The review reports both steady and unsteady state analyses related to experimental, analytical and numerical investigations, in both rectangular and cylindrical geometries with an exemption to micro and mini channel related studies. The studies are categorically put forth initially and an overview of these studies is presented in tabular and graphical form for a swift glance later under each section. This paper is concluded highlighting the salient features of the review, with respect to physical and mathematical models, methodology and applications. The challenges and scope for future study reported at the end of this paper gives the reader an insight into the gaps in the area of conjugate heat transfer analysis of steady and transient state under laminar forced convection flow regimes.

List of Symbols

Notation

A

Thermal diffusivity ratio

ADI

Alternating direction implicit

Ar

Aspect ratio

B

Buoyancy parameter, angular frequency, Biot number

Bi

Biot number

Be

Dimensionless Bejan number

Br

Brun number

CHT

Conjugate heat transfer

CR

Thermal capacity ratio

CFD

Computational fluid dynamics

CLEARER

Coupled and linked equations algorithm revised—ER

E

Elastic number

Ec

Viscous dissipation parameter

FDM

Finite difference method

FEM

Finite element method

FIDAP

Fluid dynamics analysis package

FVM

Finite volume method

GITT

Generalized Integral Transform Technique

H

Height

h

Heat transfer coefficient

k

Thermal conductivity

L, l

Length

M

Mach number

Ncc

Conduction-convection parameter or thermal conductivity ratio (solid to fluid)

Nu

Nusselt number

Nu+

Nusselt number ratio

NuZ

Local Nusselt number

Pe

Peclet number

Pr

Prandtl number

Qt

Total heat generation parameter

q+

Heat flux ratio

Re, ReH

Reynolds number

Ri

Richardson number

SIMPLE

Semi-implicit method for pressure linked equations

SIMPLER

Semi-implicit method for pressure linked equations revised

T

Ambient temperature

Tw

Wall temperature

UFED

Uniform flow effective diffusivity

u

Axial velocity

u

Free stream velocity

v

Transverse velocity

Subscript

max

Maximum

s

Solid

f

Fluid

T

Thickness

w

Wall

t

Total, time, thermalization

Free stream

R

Ratio

sat

Saturation

min

Minimum

Greek Symbols

ф

Conductance parameter

ξ

Channel length

ζ, α

Conjugate parameter

δT

Thermal boundary layer thickness

θmax

Dimensionless maximum temperature

ϕ

Porosity

δ

Boundary layer thickness

θ

Dimensionless temperature

β

Radius ratio

ηtt

Thermalization time

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M et al (2005) Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat Mater 4:42–46.  https://doi.org/10.1038/nmat1284 CrossRefGoogle Scholar
  2. 2.
    Hoogland S, Dhanjal S, Tropper AC, Roberts JS, Haring R, Paschotta R, et al (2000) Passively mode-locked diode-pumped surface-emitting semiconductor laser. In: Pacific rim conference on lasers and electro-optics, CLEO—technical digest; vol 12, pp 1135–7.  https://doi.org/10.1109/68.874213
  3. 3.
    Vikhrenko VS (2011) Heat transfer—engineering applications. INTECH Open Access Publisher, LondonCrossRefGoogle Scholar
  4. 4.
    Karim MR, Kattoura M, Mannava SR, Vasudevan VK, Malik AS, Qian D (2017) A computational study on the microstructural evolution in near-surface copper grain boundary structures due to femtosecond laser processing. Comput Mech.  https://doi.org/10.1007/s00466-017-1449-5 zbMATHCrossRefGoogle Scholar
  5. 5.
    Chowdhury IH, Xu X (2003) Heat transfer in femtosecond laser processing of metal. Numer Heat Transf Part A Appl 44:219–232.  https://doi.org/10.1080/716100504 CrossRefGoogle Scholar
  6. 6.
    Gu D, Dai D (2016) Role of melt behavior in modifying oxidation distribution using an interface incorporated model in selective laser melting of aluminum-based material. J Appl Phys 120:83104.  https://doi.org/10.1063/1.4961410 CrossRefGoogle Scholar
  7. 7.
    Fauchais P, Vardelle M, Goutier S (2016) Latest researches advances of plasma spraying: from splat to coating formation. J Therm Spray Technol 25:1534–1553.  https://doi.org/10.1007/s11666-016-0435-3 CrossRefGoogle Scholar
  8. 8.
    Vilémová M, Pala Z, Jäger A, Matějíček J, Chernyshova M, Kowalska-Strzęciwilk E et al (2016) Evaluation of surface, microstructure and phase modifications on various tungsten grades induced by pulsed plasma loading. Phys Scr 91:34003.  https://doi.org/10.1088/0031-8949/91/3/034003 CrossRefGoogle Scholar
  9. 9.
    González C, Vilatela JJ, Molina-Aldareguía JM, Lopes CS, LLorca J (2017) Structural composites for multifunctional applications: current challenges and future trends. Prog Mater Sci 89:194–251.  https://doi.org/10.1016/j.pmatsci.2017.04.005 CrossRefGoogle Scholar
  10. 10.
    Yazdani Sarvestani H, Akbarzadeh AH, Hojjati M (2017) Hygro-thermo-mechanical analysis of fiber-steered composite conical panels. Compos Struct 179:146–160.  https://doi.org/10.1016/j.compstruct.2017.07.055 CrossRefGoogle Scholar
  11. 11.
    Haldar A, Reinoso J, Jansen E, Rolfes R (2017) Thermally induced multistable configurations of variable stiffness composite plates: semi-analytical and finite element investigation. Compos Struct.  https://doi.org/10.1016/J.COMPSTRUCT.2017.02.014 CrossRefGoogle Scholar
  12. 12.
    Linke B (2016) Bonding systems. Springer, Berlin, pp 63–95.  https://doi.org/10.1007/978-3-319-28346-3_3 CrossRefGoogle Scholar
  13. 13.
    Ghoreishy MHR (2016) A state-of-the-art review on the mathematical modeling and computer simulation of rubber vulcanization process. Iran Polym J 25:89–109.  https://doi.org/10.1007/s13726-015-0405-5 CrossRefGoogle Scholar
  14. 14.
    Petroski J (2016) Thermal analysis of Ethernet connector in power applications with an engineering mechanics approach. In: 2016 15th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems. IEEE, Las Vegas, NV, USA, pp. 823–9.  https://doi.org/10.1109/itherm.2016.7517631
  15. 15.
    Nolan S, Jones CE, Norman PJ, Galloway SJ (2017) Understanding the impact of failure modes of cables for the design of turbo-electric distributed propulsion electrical power systems. In: 2016 international conference on electrical systems for aircraft, railway, ship propulsion and road vehicles and international transportation electrification conference, ESARS-ITEC 2016.  https://doi.org/10.1109/esars-itec.2016.7841363
  16. 16.
    Kumar S, Pal G, Shah T (2017) High performance overhead power lines with carbon nanostructures for transmission and distribution of electricity from renewable sources. J Clean Prod 145:180–187.  https://doi.org/10.1016/j.jclepro.2017.01.053 CrossRefGoogle Scholar
  17. 17.
    Boukrouche F, Moreau C, Harmand S, Beaubert F, Pellé J, Moreau O (2016) A thermal study of power cables cooling in tunnels. J Phys Conf Ser 745:32032.  https://doi.org/10.1088/1742-6596/745/3/032032 CrossRefGoogle Scholar
  18. 18.
    Doukas DI, Member S, Chrysochos AI, Papadopoulos TA, Labridis DP, Member S et al (2017) Superconducting DC transmission cable. IEEE Trans Appl Supercond 27:5400608.  https://doi.org/10.1109/TASC.2017.2656785 CrossRefGoogle Scholar
  19. 19.
    Yin Y, Bao J, Xiao X, Liu J, Lu Y (2016) Objective characterization on the dynamic friction coefficient of disc brake. Tribol Trans 59:1122–1133.  https://doi.org/10.1080/10402004.2016.1141444 CrossRefGoogle Scholar
  20. 20.
    Chang X, Peng Y, Zhu Z, Wang D, Gong X, Zou S et al (2016) Tribological properties of winding hoisting rope between two layers with different sliding parameters. Adv Mech Eng 8:168781401667991.  https://doi.org/10.1177/1687814016679911 CrossRefGoogle Scholar
  21. 21.
    Yin Y, Xiao X, Bao J, Liu J, Lu Y, Ji Y (2016) A new temperature parameter set for characterizing the frictional temperature rise of disc brakes. Ind Lubr Tribol 68:35–44.  https://doi.org/10.1108/ILT-03-2015-0033 CrossRefGoogle Scholar
  22. 22.
    Jamal-Abad MT, Saedodin S, Aminy M (2016) Heat transfer in concentrated solar air-heaters filled with a porous medium with radiation effects: a perturbation solution. Renew Energy 91:147–154.  https://doi.org/10.1016/J.RENENE.2016.01.050 CrossRefGoogle Scholar
  23. 23.
    Tongkratoke A, Pramuanjaroenkij A, Chaengbamrung A, Kakac S (2016) Development of mathematical modeling for nanofluids as porous media in heat transfer technology. Heat Pipe Sci Technol Int J 7:17–29.  https://doi.org/10.1615/HeatPipeScieTech.2016017200 CrossRefGoogle Scholar
  24. 24.
    Krishnamurthy MR, Prasannakumara BC, Gireesha BJ, Gorla RSR (2016) Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium. Eng Sci Technol Int J 19:53–61.  https://doi.org/10.1016/J.JESTCH.2015.06.010 CrossRefGoogle Scholar
  25. 25.
    Afzal A, Samee ADM, Razak RKA (2017) Experimental thermal investigation of CuO-W nanofluid in circular minichannel. Model Meas Control B 86:335–344CrossRefGoogle Scholar
  26. 26.
    Afzal A, Samee ADM, Javad A, Shafvan SA, Ajinas PV, Kabeer KMA (2017) Heat transfer analysis of plain and dimpled tubes with different spacings. Heat Transf Res.  https://doi.org/10.1002/htj.21318 CrossRefGoogle Scholar
  27. 27.
    Afzal A, Nawfal I, Mahbubul IM, Kumbar SS (2018) An overview on the effect of ultrasonication duration on different properties of nanofluids. J Therm Anal Calorim.  https://doi.org/10.1007/s10973-018-7144-8 CrossRefGoogle Scholar
  28. 28.
    Kumar M, Afzal A, Ramis MK (2017) Investigation of physicochemical and tribological properties of TiO2 nano-lubricant oil of different concentrations. Tribol Finnish J Tribol 35:6–15Google Scholar
  29. 29.
    Dumont Marie-Noëlle, Heyen Georges (2004) Mathematical modelling and design of an advanced once-through heat recovery steam generator. Comput Chem Eng 28:651–660.  https://doi.org/10.1016/J.COMPCHEMENG.2004.02.034 CrossRefGoogle Scholar
  30. 30.
    González-Gómez PÁ, Petrakopoulou F, Briongos JV, Santana D (2017) Steam generator design for solar towers using solar salt as heat transfer fluid. In: AIP conference proceedings. AIP Publishing, p. 30020.  https://doi.org/10.1063/1.4984363
  31. 31.
    Schwaiger K, Haider M, Haemmerle M, Steiner P, Obermaier M-D (2016) Concept of a utility scale dispatch able solar thermal electricity plant with an indirect particle receiver in a single tower layout. In: AIP conference proceedings. AIP Publishing, p. 60004.  https://doi.org/10.1063/1.4949146
  32. 32.
    Ferguson CR, Kirkpatrick AT (2015) Internal combustion engines: applied thermosciences. Wiley, HebokenGoogle Scholar
  33. 33.
    Borman G, Nishiwaki K (1987) Internal-combustion engine heat transfer. Prog Energy Combust Sci 13:1–46.  https://doi.org/10.1016/0360-1285(87)90005-0 CrossRefGoogle Scholar
  34. 34.
    Andersson O, Melander A (2015) Prediction and verification of resistance spot welding results of ultra-high strength steels through FE simulations. Model Numer Simul Mater Sci 5:26–37.  https://doi.org/10.4236/mnsms.2015.51003 CrossRefGoogle Scholar
  35. 35.
    Jhajj Kamalpreet S, Slezak Stan R, Dauna Kyle J (2015) Inferring the specific heat of an ultra high strength steel during the heating stage of hot forming die quenching, through inverse analysis. Appl Therm Eng 83:98–107.  https://doi.org/10.1016/J.APPLTHERMALENG.2015.03.013 CrossRefGoogle Scholar
  36. 36.
    Maeno T, Mori K-I, Fujimoto M (2015) Improvements in productivity and formability by water and die quenching in hot stamping of ultra-high strength steel parts. CIRP Ann 64:281–284.  https://doi.org/10.1016/j.cirp.2015.04.128 CrossRefGoogle Scholar
  37. 37.
    Mohammadian SK, Zhang Y (2015) Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles. J Power Sour 273:431–439.  https://doi.org/10.1016/j.jpowsour.2014.09.110 CrossRefGoogle Scholar
  38. 38.
    Ling Z, Wang F, Fang X, Gao X, Zhang Z (2015) A hybrid thermal management system for lithium ion batteries combining phase change materials with forced - air cooling. Appl Energy 148:403–409.  https://doi.org/10.1016/j.apenergy.2015.03.080 CrossRefGoogle Scholar
  39. 39.
    Wang T, Tseng KJ, Zhao J (2015) Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model. Appl Therm Eng 90:521–529.  https://doi.org/10.1016/j.applthermaleng.2015.07.033 CrossRefGoogle Scholar
  40. 40.
    Kaladgi AR, Samee ADM, Ramis MK (2016) Thermal performance characteristics of liquid sodium as a coolant flowing past a rectangular nuclear fuel element. Int J Nucl Energy Sci Technol 10:11–27.  https://doi.org/10.1504/IJNEST.2016.076347 CrossRefGoogle Scholar
  41. 41.
    Winterton RHS (1981) Thermal design nuclear reactors. Pergamon, OxfordGoogle Scholar
  42. 42.
    El-Wakil M (1962) Nuclear power engineering. McGraw-Hill Book Company Inc, New York.Google Scholar
  43. 43.
    Afzal A, Ansari Z, Faizabadi A, Ramis M (2017) Parallelization strategies for computational fluid dynamics software: state of the art review. Arch Comput Methods Eng 24:337–363.  https://doi.org/10.1007/s11831-016-9165-4 MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Rafeeq M, Afzal A, Rajendra S (2018) Remote supervision and control of air conditioning systems in different modes. J Inst Eng Ser C.  https://doi.org/10.1007/s40032-017-0434-2 CrossRefGoogle Scholar
  45. 45.
    Dixit Atish, Gade Upender (2015) A case study on human bio-heat transfer and thermal comfort within CFD. Build Environ 94:122–130.  https://doi.org/10.1016/J.BUILDENV.2015.07.016 CrossRefGoogle Scholar
  46. 46.
    Phuong NL, Yamashita M, Yoo S-J, Ito K (2016) Prediction of convective heat transfer coefficient of human upper and lower airway surfaces in steady and unsteady breathing conditions. Build Environ 100:172–185.  https://doi.org/10.1016/j.buildenv.2016.02.020 CrossRefGoogle Scholar
  47. 47.
    Fiala D, Havenith G (2015) Modelling human heat transfer and temperature regulation. Springer International Publishing, Mechanobiol. Mechanophysiology Mil. Inj.CrossRefGoogle Scholar
  48. 48.
    Hedlund CR, Ligrani PM, Moon H-K, Glezer B (2017) Heat transfer and flow phenomena in a swirl chamber simulating turbine blade internal cooling. ASME 1998 Int. Gas Turbine Aeroengine Congr. Exhib. Heat Transf. Electr. Power; Ind. Cogener. Vol. 4, Stockholm, Sweden, p. V004T09A081-V004T09A081.  https://doi.org/10.1115/98-gt-466
  49. 49.
    Han J-C, Dutta S, Ekkad S (2012) Gas turbine heat transfer and cooling technology. CRC Press, Boca RatonGoogle Scholar
  50. 50.
    Pinto R, Afzal A, D’Souza L, Ansari Z, Mohammed Samee AD (2017) Computational fluid dynamics in turbomachinery: a review of state of the art. Arch Comput Methods Eng 24:467–479.  https://doi.org/10.1007/s1183 MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Pinto RN, Afzal A, Navaneeth IM, Ramis MK (2016) Computational analysis of flow in turbines. In: 2016 international conference on inventive computation technologies, Coimbatore, India. IEEE, p. (3) 1–5.  https://doi.org/10.1109/inventive.2016.7830174
  52. 52.
    Kays W, Crawford M, Weigand B (2012) Convective heat and mass transfer. Tata McGraw-Hill Education, New York CityGoogle Scholar
  53. 53.
    Welty J, Wicks C, Rorrer G, Wilson R (2009) Fundamentals of momentum, heat, and mass transfer. Wiley, HobokenGoogle Scholar
  54. 54.
    Thirumaleshwar M (2009) Fundamentals of heat and mass transfer. Pearson Education India, BengaluruGoogle Scholar
  55. 55.
    Bergman T, Incropera F, DeWitt D, Lavine A (2011) Fundamentals of heat and mass transfer. Wiley, HobokenGoogle Scholar
  56. 56.
    Incropera F, De Witt D (1985) Fundamentals of heat and mass transfer. Wiley, HobokenGoogle Scholar
  57. 57.
    Guan T, Zhang J, Zhou J, Shan Y, Hang J (2017) Conjugate heat transfer on leading edge of a conical wall subjected to external cold flow and internal hot jet impingement from chevron nozzle—Part 1: experimental analysis. Int J Heat Mass Transf 106:339–355.  https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.101 CrossRefGoogle Scholar
  58. 58.
    Armando GM, Armando BBJ, Christian VC, Rangel-Hernandez VH, Belman-Flores JM (2010) Analysis of the conjugate heat transfer in a multi-layer wall including an air layer. Appl Therm Eng 30:599–604.  https://doi.org/10.1016/j.applthermaleng.2009.11.004 CrossRefGoogle Scholar
  59. 59.
    Aydin O (2006) Conjugate heat transfer analysis of double pane windows. Build Environ 41:109–116.  https://doi.org/10.1016/j.buildenv.2005.01.011 CrossRefGoogle Scholar
  60. 60.
    Guan T, Zhou Zhang J, Shan Y, Hang J (2017) Conjugate heat transfer on leading edge of a conical wall subjected to external cold flow and internal hot jet impingement from chevron nozzle—part 1: experimental analysis. Int J Heat Mass Transf 106:329–338.  https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.101 CrossRefGoogle Scholar
  61. 61.
    Wang Q, Jaluria Y (2004) Three-dimensional conjugate heat transfer in a horizontal channel with discrete heating. J Heat Transf 126:642.  https://doi.org/10.1115/1.1773195 CrossRefGoogle Scholar
  62. 62.
    Kuznetsov GV, Sheremet MA (2010) Numerical simulation of convective heat transfer modes in a rectangular area with a heat source and conducting walls. J Heat Transf 132:81401.  https://doi.org/10.1115/1.4001303 CrossRefGoogle Scholar
  63. 63.
    Conti A, Lorenzini G, Jaluria Y (2012) Transient conjugate heat transfer in straight microchannels. Int J Heat Mass Transf 55:7532–7543.  https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.046 CrossRefGoogle Scholar
  64. 64.
    Ramiar A, Ranjbar AA (2013) Two-dimensional variable property conjugate heat transfer simulation of nanofluids in microchannels. J Nanosci 2013:1–10.  https://doi.org/10.1155/2013/217382 CrossRefGoogle Scholar
  65. 65.
    Dorfman A, Renner Z (2009) Conjugate problems in convective heat transfer: review. Math Probl Eng 2009:1–27.  https://doi.org/10.1155/2009/927350 MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Hsiao K-L, Chen G-B (2007) Conjugate heat transfer of mixed convection for viscoelastic fluid past a stretching sheet. Math Probl Eng 2007:1–21.  https://doi.org/10.1155/2007/17058 MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Kilic M, Calisir T, Baskaya S (2016) Experimental and numerical study of heat transfer from a heated flat plate in a rectangular channel with an impinging air jet. J Braz Soc Mech Sci Eng.  https://doi.org/10.1007/s40430-016-0521-y CrossRefGoogle Scholar
  68. 68.
    Valueva EP, Purdin MS (2016) Heat exchange at laminar flow in rectangular channels. Thermophys Aeromech 23:857–867.  https://doi.org/10.1134/S0869864316060081 CrossRefGoogle Scholar
  69. 69.
    Satish N, Venkatasubbaiah K (2016) Conjugate heat transfer analysis of turbulent forced convection of moving plate in a channel flow. Appl Therm Eng 100:987–998.  https://doi.org/10.1016/j.applthermaleng.2016.02.076 CrossRefGoogle Scholar
  70. 70.
    Durgam S, Venkateshan SP, Sundararajan T (2017) Experimental and numerical investigations on optimal distribution of heat source array under natural and forced convection in a horizontal channel. Int J Therm Sci 115:125–138.  https://doi.org/10.1016/j.ijthermalsci.2017.01.017 CrossRefGoogle Scholar
  71. 71.
    Nonino C, Savino S, Del Giudice S, Mansutti L (2009) Conjugate forced convection and heat conduction in circular microchannels. Int J Heat Fluid Flow 30:823–830.  https://doi.org/10.1016/j.ijheatfluidflow.2009.03.009 CrossRefGoogle Scholar
  72. 72.
    Mansoor MM, Wong K-C, Siddique M (2012) Numerical investigation of fluid flow and heat transfer under high heat flux using rectangular micro-channels. Int Commun Heat Mass Transf 39:291–297.  https://doi.org/10.1016/j.icheatmasstransfer.2011.12.002 CrossRefGoogle Scholar
  73. 73.
    Harman SA, Cole KD (2001) Conjugate heat transfer from a two- layer substrate model of a convectively cooled circuit board. J Electron Packag 123:156–158.  https://doi.org/10.1115/1.1348011 CrossRefGoogle Scholar
  74. 74.
    Ortega A, Ramanathan S (2003) On the use of point source solutions for forced air cooling of electronic components—Part I: thermal wake models for rectangular heat sources. J Electron Packag 125:235.  https://doi.org/10.1115/1.1569507 CrossRefGoogle Scholar
  75. 75.
    Ramis MK, Jilani G (2004) Thermal performance characteristics of a nuclear fuel element dissipating heat in a surrounding medium. In: Proceedings of the ESDA04 7th Biennial conference engineering systems design and analysis, Manchester, England, p. 247–52.  https://doi.org/10.1115/esda2004-58370
  76. 76.
    Poddar A, Chatterjee R, Chakravarty A, Ghosh K, Mukhopadhyay A, Sen S (2015) Thermodynamic analysis of a solid nuclear fuel element surrounded by flow of coolant through a concentric annular channel. Prog Nucl Energy 85:178–191.  https://doi.org/10.1016/j.pnucene.2015.06.018 CrossRefGoogle Scholar
  77. 77.
    Krikkis RN (2017) Laminar conjugate forced convection over a flat plate. Multiplicities and stability. Int J Therm Sci 111:204–214.  https://doi.org/10.1016/j.ijthermalsci.2016.08.021 CrossRefGoogle Scholar
  78. 78.
    Senapati JR, Dash SK, Roy S (2017) Numerical investigation of natural convection heat transfer from vertical cylinder with annular fins. Int J Therm Sci 111:146–159.  https://doi.org/10.1016/j.ijthermalsci.2016.08.019 CrossRefGoogle Scholar
  79. 79.
    Ahmad W, Syed KS, Ishaq M, Hassan A, Iqbal Z (2017) Numerical study of conjugate heat transfer in a double-pipe with exponential fins using DGFEM. Appl Therm Eng 111:1184–1201.  https://doi.org/10.1016/j.applthermaleng.2016.09.171 CrossRefGoogle Scholar
  80. 80.
    Kumar GG, Rao CG (2011) Interaction of surface radiation with conjugate mixed convection from a vertical plate with multiple nonidentical discrete heat sources. Chem Eng Commun 198:692–710.  https://doi.org/10.1080/00986445.2011.532745 CrossRefGoogle Scholar
  81. 81.
    Sudhakar T, Balaji C, Venkateshan S (2009) Optimal configuration of discrete heat sources in a vertical duct under conjugate mixed convection using artificial neural networks. Int J Therm Sci 48:881–890.  https://doi.org/10.1016/j.ijthermalsci.2008.06.013 CrossRefGoogle Scholar
  82. 82.
    Sawant SM, Gururaja Rao C (2008) Conjugate mixed convection with surface radiation from a vertical electronic board with multiple discrete heat sources. Heat Mass Transf Und Stoffuebertragung 44:1485–1495.  https://doi.org/10.1007/s00231-008-0395-3 CrossRefGoogle Scholar
  83. 83.
    Mathews RN, Balaji C, Sundararajan T (2007) Computation of conjugate heat transfer in the turbulent mixed convection regime in a vertical channel with multiple heat sources. Heat Mass Transf Und Stoffuebertragung 43:1063–1074.  https://doi.org/10.1007/s00231-006-0192-9 CrossRefGoogle Scholar
  84. 84.
    Ahamad SI, Balaji C (2015) A simple thermal model for mixed convection from protruding heat sources. Heat Transf Eng 36:396–407.  https://doi.org/10.1080/01457632.2014.923984 CrossRefGoogle Scholar
  85. 85.
    Rao GM, Narasimham GSVL (2007) Laminar conjugate mixed convection in a vertical channel with heat generating components. Int J Heat Mass Transf 50:3561–3574.  https://doi.org/10.1016/j.ijheatmasstransfer.2006.12.030 zbMATHCrossRefGoogle Scholar
  86. 86.
    Rao CG, Balaji C, Venkateshan SP (2014) Surface radiation from a vertical plate with a discrete heat source. J Heat Transf 123:698–702.  https://doi.org/10.1115/1.1373654 CrossRefGoogle Scholar
  87. 87.
    He J, Liu L, Jacobi AM (2011) Conjugate thermal analysis of air-cooled discrete flush-mounted heat sources in a horizontal channel. J Electron Packag 133:41001.  https://doi.org/10.1115/1.4005299 CrossRefGoogle Scholar
  88. 88.
    Premachandran B, Balaji C (2011) Conjugate mixed convection with surface radiation from a vertical channel with protruding heat sources. Numer Heat Transf Part A Appl 60:171–196.  https://doi.org/10.1080/10407782.2011.588577 zbMATHCrossRefGoogle Scholar
  89. 89.
    Gururaja Rao C, Balaji C, Venkateshan SP (2002) Effect of surface radiation on conjugate mixed convection in a vertical channel with a discrete heat source in each wall. Int J Heat Mass Transf 45:3331–3347.  https://doi.org/10.1016/S0017-9310(02)00061-3 zbMATHCrossRefGoogle Scholar
  90. 90.
    Al-Sanea SA (2003) Convection regimes and heat transfer characteristics along a continuously moving heated vertical plate. Int J Heat Fluid Flow 24:888–901.  https://doi.org/10.1016/j.ijheatfluidflow.2003.10.001 CrossRefGoogle Scholar
  91. 91.
    Bautista O, Mendez F (2006) Internal heat generation in a discrete heat source: conjugate heat transfer analysis. Appl Therm Eng 26:2201–2208.  https://doi.org/10.1016/j.applthermaleng.2006.03.018 CrossRefGoogle Scholar
  92. 92.
    Nigen JS, Amon CH (1994) Time-dependent conjugate heat-transfer characteristics of self-sustained oscillatory flows in a grooved channel. J Fluids Eng ASME 116:499–507.  https://doi.org/10.1115/1.2910305 CrossRefGoogle Scholar
  93. 93.
    Aydin O, Avci M, Bali T, Arici ME (2014) Conjugate heat transfer in a duct with an axially varying heat flux. Int J Heat Mass Transf 76:385–392.  https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.062 CrossRefGoogle Scholar
  94. 94.
    Perelman TL (1961) On conjugated problems of heat transfer. Int J Heat Mass Transf 3:293–303.  https://doi.org/10.1016/0017-9310(61)90044-8 CrossRefGoogle Scholar
  95. 95.
    Luikov A, Aleksashenko V, Aleksashenko A (1971) Analytical methods of solution of conjugated problems in convective heat transfer. Int J Heat Mass Transf 14:1047–1056.  https://doi.org/10.1016/0017-9310(71)90203-1 zbMATHCrossRefGoogle Scholar
  96. 96.
    Luikov AV (1974) Conjugate convective heat transfer problems. Int J Heat Mass Transf 17:257–265.  https://doi.org/10.1016/0017-9310(74)90087-8 CrossRefGoogle Scholar
  97. 97.
    Payvar P (1977) Convective heat transfer to laminar flow over a plate of finite thickness. Int J Heat Mass Transf 20:431–433.  https://doi.org/10.1016/0017-9310(77)90165-X zbMATHCrossRefGoogle Scholar
  98. 98.
    Pozzi A, Lupo M (1989) The coupling of conduction with forced convection over a flat plate. Int J Heat Mass Transf 32:1207–1214.  https://doi.org/10.1016/0017-9310(89)90021-5 CrossRefGoogle Scholar
  99. 99.
    Ma SW, Behbahani AI, Tsuei YG (1991) Two-dimensional rectangular fin with variable heat transfer coefficient. Int J Heat Mass Transf 34:79–85.  https://doi.org/10.1016/0017-9310(91)90175-E CrossRefGoogle Scholar
  100. 100.
    Rizk TA, Kleinstreuer C, Ozisik MN (1992) Analytic solution to the conjugate heat transfer problem of flow past a heated block. Int J Heat Mass Transf 35:1519–1525.  https://doi.org/10.1016/0017-9310(92)90041-P zbMATHCrossRefGoogle Scholar
  101. 101.
    Prasad BVSSS, Sarkar SD (1993) Conjugate laminar forced convection from a flat plate with imposed pressure gradient. J Heat Transf 115:469–472.  https://doi.org/10.1115/1.2910702 CrossRefGoogle Scholar
  102. 102.
    Mosaad M (1999) Laminar forced convection conjugate heat transfer over a flat plate. Heat Mass Transf 35:371–375.  https://doi.org/10.1007/s002310050338 CrossRefGoogle Scholar
  103. 103.
    Harman SA, Cole KD (2001) Conjugate heat transfer from a two- layer substrate model of a convectively cooled circuit board. J Electron Packag 123:156–158.  https://doi.org/10.1115/1.1348011 CrossRefGoogle Scholar
  104. 104.
    Fredrik Stein C, Johansson P, Bergh J, Löfdahl L, Sen M, Gad-el-Hak M (2002) An analytical asymptotic solution to a conjugate heat transfer problem. Int J Heat Mass Transf 45:2485–2500.  https://doi.org/10.1016/S0017-9310(01)00343-X zbMATHCrossRefGoogle Scholar
  105. 105.
    Lindstedt M, Karvinen R (2017) Conjugated heat transfer from a uniformly heated plate and a plate fin with uniform base heat flux. Int J Heat Mass Transf 107:89–95.  https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.079 CrossRefGoogle Scholar
  106. 106.
    Faghri M, Sparrow EM (1980) Simultaneous wall and fluid axial conduction in laminar pipe-flow heat transfer. J Heat Transf 102:58–63CrossRefGoogle Scholar
  107. 107.
    Wijeysundera NE (1986) Laminar forced convection in circular and flat ducts with wall axial conduction and external convection. Int J Heat Mass Transf 29:797–807.  https://doi.org/10.1016/0017-9310(86)90131-6 zbMATHCrossRefGoogle Scholar
  108. 108.
    Zebib A, Wo YK (1989) A two-dimensional conjugate heat transfer model for forced air cooling of an electronic device. J Electron Packag 111:41–45.  https://doi.org/10.1115/1.3226507 CrossRefGoogle Scholar
  109. 109.
    Luna N, Mendez F, Trevino C (2002) Conjugated heat transfer in circular ducts with a power-law laminar convection fluid flow. Int J Heat Mass Transf 45:655–666.  https://doi.org/10.1016/S0017-9310(01)00147-8 zbMATHCrossRefGoogle Scholar
  110. 110.
    Nield DA (2004) Forced convection in a parallel plate channel with asymmetric heating. Int J Heat Mass Transf 47:5609–5612.  https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.006 zbMATHCrossRefGoogle Scholar
  111. 111.
    Horvat A, Mavko B (2005) Calculation of conjugate heat transfer problem with volumetric heat generation using the Galerkin method. Appl Math Model 29:477–495.  https://doi.org/10.1016/j.apm.2004.09.012 zbMATHCrossRefGoogle Scholar
  112. 112.
    Barletta A, di Schio E, Comini G, D’Agaro P (2008) Conjugate forced convection heat transfer in a plane channel: longitudinally periodic regime. Int J Therm Sci 47:43–51.  https://doi.org/10.1016/j.ijthermalsci.2007.01.013 CrossRefGoogle Scholar
  113. 113.
    Bula AJ, Vasquez RS (2010) Uncoupling laminar conjugate heat transfer through Chebyshev polynomial. Dyna; 77:160–71. http://www.revistas.unal.edu.co/index.php/dyna/article/view/25548
  114. 114.
    Sucec J (1975) Unsteady heat transfer between a fluid, with time varying temperature, and a plate: an exact solution. Int J Heat Mass Transf 18:25–36.  https://doi.org/10.1016/0017-9310(75)90004-6 CrossRefGoogle Scholar
  115. 115.
    Sucec J (1980) Transient heat transfer between a plate and a fluid whose temperature varies periodically with time. J Heat Transf 102:126.  https://doi.org/10.1115/1.3244223 CrossRefGoogle Scholar
  116. 116.
    Sucec J (1981) An improved quasi-steady approach for transient conjugated forced convection problems. Int J Heat Mass Transf 24:1711–1722.  https://doi.org/10.1016/0017-9310(81)90079-X zbMATHCrossRefGoogle Scholar
  117. 117.
    Sucec J, Sawant AM (1984) Unsteady, conjugated, forced convection heat transfer in a parallel plate duct. Int J Heat Mass Transf 27:95–101.  https://doi.org/10.1016/0017-9310(84)90241-2 CrossRefGoogle Scholar
  118. 118.
    Sucec J (1987) Exact solution for unsteady conjugated heat transfer in the thermal entrance region of a duct. J Heat Transf 109:295–299.  https://doi.org/10.1115/1.3248079 CrossRefGoogle Scholar
  119. 119.
    Sucec J (2002) Unsteady forced convection with sinusoidal duct wall generation: the conjugate heat transfer problem. Int J Heat Mass Transf 45:1631–1642.  https://doi.org/10.1016/S0017-9310(01)00275-7 zbMATHCrossRefGoogle Scholar
  120. 120.
    Treviño C, Liñán A (1984) External heating of a flat plate in a convective flow. Int J Heat Mass Transf 27:1067–1073.  https://doi.org/10.1016/0017-9310(84)90122-4 zbMATHCrossRefGoogle Scholar
  121. 121.
    Pozzi A, Tognaccini R (2000) Coupling of conduction and convection past an impulsively started semi-infinite flat plate. Int J Heat Mass Transf 43:1121–1131.  https://doi.org/10.1016/S0017-9310(99)00210-0 zbMATHCrossRefGoogle Scholar
  122. 122.
    Luna N, Mendez F, Mar E (2003) Transient analysis of the conjugated heat transfer in circular ducts with a power-law fluid. J Nonnewton Fluid Mech 111:69–85.  https://doi.org/10.1016/s0377-0257(03)00014-4 zbMATHCrossRefGoogle Scholar
  123. 123.
    Meng F, Dong S, Wang J, Guo D (2016) A new algorithm of global tightly-coupled transient heat transfer based on quasi-steady flow to the conjugate heat transfer problem. Theor Appl Mech Lett 6:233–235.  https://doi.org/10.1016/j.taml.2016.08.005 CrossRefGoogle Scholar
  124. 124.
    Karvinen R (1988) Transient conjugated heat-transfer to laminar-flow in a tube or channel. Int J Heat Mass Transf 31:1326–1328.  https://doi.org/10.1016/0017-9310(88)90076-2 CrossRefGoogle Scholar
  125. 125.
    Santos WFN, Travelho JS (1993) Transient conjugated forced convection in a parallel plate duct with convection from the ambient and periodic variation of inlet temperature. Appl Sci Res 51:625–638.  https://doi.org/10.1007/BF00868004 zbMATHCrossRefGoogle Scholar
  126. 126.
    Al-Nimr MA, Abu-Hijleh BA (2001) Validation of the thermal equilibrium assumption in the transient conjugated forced convection channel flow. Heat Mass Transf 37:361–369.  https://doi.org/10.1007/s002310000167 CrossRefGoogle Scholar
  127. 127.
    Maranzana G, Perry I, Maillet D (2004) Modeling of conjugate heat transfer between parallel plates separated by a hydrodynamically developed laminar flow by the quadrupole method. Numer Heat Transf Part A Appl 46:147–165.  https://doi.org/10.1080/10407780490457572 CrossRefGoogle Scholar
  128. 128.
    Pozzi A, Tognaccini R (2011) Conjugated heat transfer in unsteady channel flows. Int J Heat Mass Transf 54:4019–4027.  https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.019 zbMATHCrossRefGoogle Scholar
  129. 129.
    Adelaja AO, Dirker J, Meyer JP (2014) Effects of the thick walled pipes with convective boundaries on laminar flow heat transfer. Appl Energy 130:838–845.  https://doi.org/10.1016/j.apenergy.2014.01.072 CrossRefGoogle Scholar
  130. 130.
    Knupp DC, Cotta RM, Naveira-Cotta CP (2015) Fluid flow and conjugated heat transfer in arbitrarily shaped channels via single domain formulation and integral transforms. Int J Heat Mass Transf 82:479–489.  https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.007 CrossRefGoogle Scholar
  131. 131.
    Sohal MS, Howell JR (1973) Determination, of plate temperature in case of combined conduction, convection and radiation heat exchange. Int J Heat Ans Mass Transf 16:2055–2066.  https://doi.org/10.1016/0017-9310(73)90108-7 zbMATHCrossRefGoogle Scholar
  132. 132.
    Karvinen R (1978) Some new results for conjugated heat transfer in a flat plate. Int J Heat Mass Transf 21:1261–1264.  https://doi.org/10.1016/0017-9310(78)90145-X CrossRefGoogle Scholar
  133. 133.
    Brosh A, Degani D, Zalmanovich S (1982) Conjugated heat transfer in a laminar boundary layer with heat source at the wall. J Heat Transf 104:90–95CrossRefGoogle Scholar
  134. 134.
    Char MI, Chen CK, Cleaver JW (1990) Conjugate forced convection heat transfer from a continuous, moving flat sheet. Int J Heat Fluid Flow 11:257–261.  https://doi.org/10.1016/0142-727X(90)90046-E CrossRefGoogle Scholar
  135. 135.
    Yu W-S, Lint H-T, Hwang T-Y (1991) Conjugate heat transfer of conduction and forced convection along wedges and a rotating cone. Int J Heat Mass Transf 34:2497–2507.  https://doi.org/10.1016/0017-9310(91)90091-R CrossRefGoogle Scholar
  136. 136.
    Culham JR, Lemczyk TF, Lee S, Yovanovich MM (1991) META- A conjugate heat transfer model for air cooling of circuit boards with arbitrarily located heat source. In: ASME national heat transfer conference heat transfer in electronic equipment, vol. 171, pp. 117–26. http://www.mhtl.uwaterloo.ca/old/paperlib/papers/elect/circuit/conj/abstract2.html
  137. 137.
    Lim JS, Bejan A, Kim JH (1992) The optimal thickness of a wall with convection on one side. Int J Heat Mass Transf 35:1673–1679.  https://doi.org/10.1016/0017-9310(92)90138-I zbMATHCrossRefGoogle Scholar
  138. 138.
    Pop I, Ingham DB (1993) A note on conjugate flow forced convection past a fiat plate. Int J Heat Mass Transf 36:3873–3876.  https://doi.org/10.1016/0017-9310(93)90068-H zbMATHCrossRefGoogle Scholar
  139. 139.
    Pop I, Kumari M, Nath G (1994) Conjugate MHD flow past a flat plate. Acta Mech 106:215–220.  https://doi.org/10.1007/BF01213563 zbMATHCrossRefGoogle Scholar
  140. 140.
    Cole KD (1997) Conjugate heat transfer from a small heated strip. Int J Heat Mass Transf 40:2709–2719.  https://doi.org/10.1016/S0017-9310(96)00232-3 zbMATHCrossRefGoogle Scholar
  141. 141.
    Wang T (1997) The analysis of conjugate problems of conduction and convection for non-newtonian fluids past a flat plate. Int Commun Heat Ans Mass Transf 24:337–348.  https://doi.org/10.1016/S0735-1933(97)00019-5 CrossRefGoogle Scholar
  142. 142.
    Vynnycky M, Kimura S, Kanev K, Pop I (1998) Forced convection heat transfer from a flat plate: the conjugate problem. Int J Heat Mass Transf 41:45–59.  https://doi.org/10.1016/S0017-9310(97)00113-0 zbMATHCrossRefGoogle Scholar
  143. 143.
    Shu, Pop I, J-J, Pop I (1998) On thermal boundary layers on a flat plate subjected to a variable heat flux. Int J Heat Fluid Flow 19:79–84.  https://doi.org/10.1016/s0142-727x(97)10026-1 CrossRefGoogle Scholar
  144. 144.
    Hriberšek M, Kuhn G (2000) Conjugate heat transfer by boundary-domain integral method. Eng Anal Bound Elem 24:297–305.  https://doi.org/10.1016/S0955-7997(00)00008-4 zbMATHCrossRefGoogle Scholar
  145. 145.
    Chida K (2000) Surface temperature of a flat plate of finite thickness under conjugate laminar forced convection heat transfer condition. Int J Heat Ans Mass Transf 43:639–642.  https://doi.org/10.1016/S0017-9310(99)00170-2 zbMATHCrossRefGoogle Scholar
  146. 146.
    Hajmohammadi MR, Nourazar SS (2014) Conjugate forced convection heat transfer from a heated flat plate of finite thickness and temperature- dependent thermal conductivity. Heat Transf Eng 35:863–874.  https://doi.org/10.1080/01457632.2014.852896 CrossRefGoogle Scholar
  147. 147.
    Ortega A, Ramanathan S (2003) On the use of point source solutions for forced air cooling of electronic components—Part II: conjugate forced convection from a discrete rectangular source on a thin conducting plate. J Electron Packag 125:235.  https://doi.org/10.1115/1.1569507 CrossRefGoogle Scholar
  148. 148.
    Sparrow EM, Chyu MK (1982) Conjugate forced convection-conduction analysis of heat transfer in a plate fin. J Heat Transf 87:421–422.  https://doi.org/10.1115/1.3245055 CrossRefGoogle Scholar
  149. 149.
    Sunden B (1985) The effect of prandtl number on conjugate heat transfer from rectangular fins. Int Commun Heat Mass Transf 12:225–232.  https://doi.org/10.1016/0735-1933(85)90045-4 CrossRefGoogle Scholar
  150. 150.
    Sunden B (1989) Analysis of conjugated laminar and turbulent forced convection- conduction heat transfer of a plate fin. Int Commun Heat Ans Mass Transf 16:821–831.  https://doi.org/10.1016/0735-1933(89)90008-0 CrossRefGoogle Scholar
  151. 151.
    Huang M-J, Chen C-K (1987) Conjugate forced convection-conduction plate fin in power law fluids. Int Commun Heat Ans Mass Transf 14:371–380.  https://doi.org/10.1016/0735-1933(87)90058-3 CrossRefGoogle Scholar
  152. 152.
    Hsiao K, Hsu C (2009) Conjugate heat transfer of forced convection with viscous dissipation for visco-elastic fluid past a flat plate fin. Int Conf Comput Exp Eng Sci 9:3–21.  https://doi.org/10.3970/icces.2009.009.003 CrossRefGoogle Scholar
  153. 153.
    Jilani G, Jayaraj S, Adeel Ahmad M (2001) Conjugate forced convection-conduction heat transfer analysis of a heat generating vertical cylinder. Int J Heat Mass Transf 45:331–341.  https://doi.org/10.1016/S0017-9310(01)00140-5 zbMATHCrossRefGoogle Scholar
  154. 154.
    Ramis MK, Jilani G, Jahangeer S (2008) Conjugate conduction-forced convection heat transfer analysis of a rectangular nuclear fuel element with non-uniform volumetric energy generation. Int J Heat Mass Transf 51:517–525.  https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.019 zbMATHCrossRefGoogle Scholar
  155. 155.
    Ramis MK, Jilani G (2009) Numerical study of a nuclear fuel element dissipating fission heat into its surrounding fluid medium. Int J Heat Mass Transf 52:5005–5012.  https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.035 zbMATHCrossRefGoogle Scholar
  156. 156.
    Ramis MK, Jilani G (2010) Heat and fluid flow characteristics of liquid sodium flowing past a nuclear fuel element with non-uniform energy generation. Int J Heat Mass Transf 53:1682–1690.  https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.021 zbMATHCrossRefGoogle Scholar
  157. 157.
    Razak RKA, Mohammed S, Ramis MK (2017) Numerical investigation of Prandtl number effect on heat transfer and fluid flow characteristics of a nuclear fuel element. Nucl Energy Technol 3:81–91.  https://doi.org/10.1016/j.nucet.2017.04.002 CrossRefGoogle Scholar
  158. 158.
    Jahangeer S, Ramis MK, Jilani G (2007) Conjugate heat transfer analysis of a heat generating vertical plate. Int J Heat Mass Transf 50:85–93.  https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.042 zbMATHCrossRefGoogle Scholar
  159. 159.
    Barozzi GS, Pagliarini G (1985) A method to solve conjugate heat transfer problems: the case of fully developed laminar flow in a pipe. ASME J Heat Transf 107:77–83CrossRefGoogle Scholar
  160. 160.
    Bilir Ş (1995) Laminar flow heat transfer in pipes including two-dimensional wall and fluid axial conduction. Int J Heat Mass Transf 38:1619–1625.  https://doi.org/10.1016/0017-9310(94)00269-2 zbMATHCrossRefGoogle Scholar
  161. 161.
    Wang M, Georgiadis JG (1996) Conjugate forced convection in crossflow over a cylinder array with volumetric heating. Int J Heat Mass Transf 39:1351–1361.  https://doi.org/10.1016/0017-9310(95)00217-0 zbMATHCrossRefGoogle Scholar
  162. 162.
    Al-Zaharnah IT, Yilbas BS, Hashmi MSJ (2000) Conjugate heat transfer in fully developed laminar pipe flow and thermally induced stresses. Comput Methods Appl Mech Eng 190:1091–1104.  https://doi.org/10.1016/S0045-7825(99)00467-3 zbMATHCrossRefGoogle Scholar
  163. 163.
    Alves TA, Altemani CAC (2011) Conjugate cooling of a protruding heater in a channel with distinct flow constraints. Glob J Res Eng 13:278–286.  https://doi.org/10.1590/s1678-58782011000300003 CrossRefGoogle Scholar
  164. 164.
    Jagad PI, Puranik BP, Date AW (2012) An iterative procedure for the evaluation of a conjugate condition in heat transfer problems. Numer Heat Transf Part A Appl 61:353–380.  https://doi.org/10.1080/10407782.2012.648016 CrossRefGoogle Scholar
  165. 165.
    Olakoyejo OT, Bello-Ochende T, Meyer JP (2012) Constructal conjugate cooling channels with internal heat generation. Int J Heat Mass Transf 55:4385–4396.  https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.007 CrossRefGoogle Scholar
  166. 166.
    Bello-Ochende T, Olakoyejo OT, Meyer JP, Bejan A, Lorente S (2013) Constructal flow orientation in conjugate cooling channels with internal heat generation. Int J Heat Mass Transf 57:241–249.  https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.021 CrossRefGoogle Scholar
  167. 167.
    Li HY, Yap YF, Lou J, Chai JC, Shang Z (2015) Numerical investigation of conjugated heat transfer in a channel with a moving depositing front. Int J Therm Sci 88:136–147.  https://doi.org/10.1016/j.ijthermalsci.2014.09.017 CrossRefGoogle Scholar
  168. 168.
    Huang SM, Zhang LZ, Yang M (2013) Conjugate heat and mass transfer in membrane parallel-plates ducts for liquid desiccant air dehumidification: effects of the developing entrances. J Membr Sci 437:82–89.  https://doi.org/10.1016/j.memsci.2013.02.048 CrossRefGoogle Scholar
  169. 169.
    Mohammad Samee AD, Afzal A, Razak RKA, Ramis MK (2018) Effect of Prandtl number on the average exit temperature of coolant in a heat-generating vertical parallel plate channel: a conjugate analysis. Heat Transf Asian Res.  https://doi.org/10.1002/htj.21330 CrossRefGoogle Scholar
  170. 170.
    Chiu WKS, Richards CJ, Jaluria Y (2001) Experimental and numerical study of conjugate heat transfer in a horizontal channel heated from below. J Heat Transf 123:688.  https://doi.org/10.1115/1.1372316 CrossRefGoogle Scholar
  171. 171.
    Rajesh Kanna P, Das MK (2006) Conjugate heat transfer study of backward-facing step flow—a benchmark problem. Int J Heat Mass Transf 49:3929–3941.  https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.058 zbMATHCrossRefGoogle Scholar
  172. 172.
    Ramadhyani S, Moffatt DF, Incropera FP (1985) Conjugate heat transfer from small isothermal heat sources embedded in a large substrate. Int J Heat Mass Transf 28:1945–1952.  https://doi.org/10.1016/0017-9310(85)90216-9 CrossRefGoogle Scholar
  173. 173.
    Sugavanam R, Ortega A, Choi CY (1995) Numerical heat transfer, Part A : applications interaction of surface radiation with conduction and convection from a vertical channel with multiple discrete heat sources in the left wall. Int J Heat Mass Transf 38:2969–2984.  https://doi.org/10.1016/0017-9310(95)00039-C zbMATHCrossRefGoogle Scholar
  174. 174.
    Habeeb S (2007) Investigation of heat transfer phenomena and flow behavior around electronic chip. Al-Khwarizmi Eng J; 3:17–31. http://www.iasj.net/iasj?func=fulltext&aId=2329
  175. 175.
    Cheng YP, Lee TS, Low HT (2008) Numerical simulation of conjugate heat transfer in electronic cooling and analysis based on field synergy principle. Appl Therm Eng 28:1826–1833.  https://doi.org/10.1016/j.applthermaleng.2007.11.008 CrossRefGoogle Scholar
  176. 176.
    Juncu G (2005) Unsteady forced convection heat/mass transfer from a flat plate. Heat Mass Transf Und Stoffuebertragung 41:1095–1102.  https://doi.org/10.1007/s00231-005-0641-x CrossRefGoogle Scholar
  177. 177.
    Juncu G (2008) Unsteady conjugate forced convection heat / mass transfer from a finite flat plate. Int J Therm Sci 47:972–984.  https://doi.org/10.1016/j.ijthermalsci.2007.09.002 CrossRefGoogle Scholar
  178. 178.
    Kanna PR, Das MK (2005) Conjugate forced convection heat transfer from a flat plate by laminar plane wall jet flow. Int J Heat Mass Transf 48:2896–2910.  https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.033 zbMATHCrossRefGoogle Scholar
  179. 179.
    Kanna PR, Das MK (2009) Effect of geometry on the conjugate heat transfer of wall jet flow over a backward-facing step. J Heat Transf 131:114501.  https://doi.org/10.1115/1.2717251 CrossRefGoogle Scholar
  180. 180.
    He L, Oldfield MLG (2010) Unsteady conjugate heat transfer modeling. J Turbomach 133:31022.  https://doi.org/10.1115/1.4001245 CrossRefGoogle Scholar
  181. 181.
    Lin TF, Kuo JC (1988) Transient conjugated heat-transfer in fully-developed laminar pipe flows. Int J Heat Mass Transf 31:1093–1102.  https://doi.org/10.1016/0017-9310(88)90097-x zbMATHCrossRefGoogle Scholar
  182. 182.
    Yan WM (1993) Transient conjugated heat transfer in channel flows with convection from the ambient. Int J Heat Mass Transf 36:1295–1301.  https://doi.org/10.1016/S0017-9310(05)80098-5 CrossRefGoogle Scholar
  183. 183.
    Lee K-T, Yan W-M (1993) Transient conjugated forced convection heat transfer with fully developed laminar flow in pipes. Numer Heat Transf Part A Appl 23:341–359.  https://doi.org/10.1080/10407789308913676 CrossRefGoogle Scholar
  184. 184.
    Nigen JS, Amon CH (1995) Effect of material composition and localized heat generation on time-dependent conjugate heat transport. Int J Heat Mass Transf 38:1565–1576zbMATHCrossRefGoogle Scholar
  185. 185.
    Moraga NO, Medina EE (2000) Conjugate forced convection and heat conduction with freezing of water content in a plate shaped food. Int J Heat Mass Transf 43:53–67.  https://doi.org/10.1016/S0017-9310(99)00119-2 zbMATHCrossRefGoogle Scholar
  186. 186.
    Bilir Ş (2002) Transient conjugated heat transfer in pipes involving two-dimensional wall and axial fluid conduction. Int J Heat Mass Transf 45:1781–1788.  https://doi.org/10.1016/S0017-9310(01)00270-8 zbMATHCrossRefGoogle Scholar
  187. 187.
    Bilir Ş̧, Ateş A (2003) Transient conjugated heat transfer in thick walled pipes with convective boundary conditions. Int J Heat Mass Transf 46:2701–2709.  https://doi.org/10.1016/s0017-9310(03)00032-2 zbMATHCrossRefGoogle Scholar
  188. 188.
    Ate A, Darici S, Bilir E (2010) Unsteady conjugated heat transfer in thick walled pipes involving two-dimensional wall and axial fluid conduction with uniform heat flux boundary condition. Int J Heat Mass Transf 53:5058–5064.  https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.059 zbMATHCrossRefGoogle Scholar
  189. 189.
    Abu-Hijleh BA, Al-Nimr MA, Hader MA (2003) Thermal equilibrium in transient conjugated forced-convection channel flow. Numer Heat Transf Part A Appl 43:327–339.  https://doi.org/10.1080/10407780307307 CrossRefGoogle Scholar
  190. 190.
    Lin DTW, Yan WM, Li HY (2008) Inverse problem of unsteady conjugated forced convection in parallel plate channels. Int J Heat Mass Transf 51:993–1002.  https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.022 zbMATHCrossRefGoogle Scholar
  191. 191.
    Zueco J (2008) Unsteady conjugate problem of a dissipative fluid in a horizontal channel with a periodic variation temperature. Meccanica 43:37–46.  https://doi.org/10.1007/s11012-007-9092-4 zbMATHCrossRefGoogle Scholar
  192. 192.
    Arici ME, Aydin O (2009) Conjugate heat transfer in thermally developing laminar flow with viscous dissipation effects. Heat Mass Transf 45:1199–1203.  https://doi.org/10.1007/s00231-009-0494-9 CrossRefGoogle Scholar
  193. 193.
    Mohammadi Pirouz M, Farhadi M, Sedighi K, Nemati H, Fattahi E (2011) Lattice Boltzmann simulation of conjugate heat transfer in a rectangular channel with wall-mounted obstacles. Sci Iran 18:213–221.  https://doi.org/10.1016/j.scient.2011.03.016 CrossRefGoogle Scholar
  194. 194.
    Oliveria LS, Haghighi K (1998) Conjugate heat and mass transfer in convective drying of porous media. Numer Heat Transf Part A 34:105–117.  https://doi.org/10.1080/10407789808913980 CrossRefGoogle Scholar
  195. 195.
    Murugesan K, Suresh HN, Seetharamu KN, Aswatha Narayana PA, Sundararajan T (2001) A theoretical model of brick drying as a conjugate problem. Int J Heat Mass Transf 44:4075–4086.  https://doi.org/10.1016/S0017-9310(01)00065-5 zbMATHCrossRefGoogle Scholar
  196. 196.
    De Bonis MV, Ruocco G (2008) A generalized conjugate model for forced convection drying based on an evaporative kinetics. J Food Eng 89:232–240.  https://doi.org/10.1016/j.jfoodeng.2008.05.008 CrossRefGoogle Scholar
  197. 197.
    Lamnatou C, Papanicolaou E, Belessiotis VG, Kyriakis N (2009) Conjugate heat and mass transfer from a drying rectangular cylinder in confined air flow. Numer Heat Transf Part A 56:379–405.  https://doi.org/10.1080/10407780903244353 CrossRefGoogle Scholar
  198. 198.
    Lamnatou C, Papanicolaou E, Belessiotis V, Kyriakis N (2010) Numerical study of the interaction among a pair of blunt plates subject to convective drying—A conjugate approach. Int J Therm Sci 49:2467–2482.  https://doi.org/10.1016/j.ijthermalsci.2010.06.017 CrossRefGoogle Scholar
  199. 199.
    Lamnatou C, Papanicolaou E, Belessiotis V, Kyriakis N (2010) Finite-volume modelling of heat and mass transfer during convective drying of porous bodies—non-conjugate and conjugate formulations involving the aerodynamic effects. Renew Energy 35:1391–1402.  https://doi.org/10.1016/j.renene.2009.11.008 CrossRefGoogle Scholar
  200. 200.
    Malik AH, Alvi MSI, Khushnood S, Mahfouz FM, Ghauri MKK, Shah A (2012) Experimental study of conjugate heat transfer within a bottom heated vertical concentric cylindrical enclosure. Int J Heat Mass Transf 55:1154–1163.  https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.055 CrossRefGoogle Scholar
  201. 201.
    Cukurel B, Arts T, Selcan C (2012) Conjugate heat transfer characterization in cooling channels. J Therm Sci 21:286–294.  https://doi.org/10.1007/s11630-012-0546-1 CrossRefGoogle Scholar
  202. 202.
    Yusoff S, Mohamed M, Ahmad KA, Abdullah MZ, Mujeebu MA, Mohd Ali Z et al (2009) 3-D conjugate heat transfer analysis of PLCC packages mounted in-line on a Printed Circuit Board. Int Commun Heat Mass Transf 36:813–819.  https://doi.org/10.1016/j.icheatmasstransfer.2009.04.013 CrossRefGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2019

Authors and Affiliations

  • Asif Afzal
    • 1
  • A. D. Mohammed Samee
    • 1
  • R. K. Abdul Razak
    • 1
  • M. K. Ramis
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringP. A. College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi)MangaluruIndia

Personalised recommendations