Advertisement

Review of Patient-Specific Vascular Modeling: Template-Based Isogeometric Framework and the Case for CAD

  • Benjamin Urick
  • Travis M. Sanders
  • Shaolie S. HossainEmail author
  • Yongjie J. Zhang
  • Thomas J. R. Hughes
Original Paper
  • 606 Downloads

Abstract

We review the literature on patient-specific vascular modeling, with particular attention paid to three-dimensional arterial networks. Patient-specific vascular modeling typically involves three main steps: image processing, analysis suitable model generation, and computational analysis. Analysis suitable model generation techniques that are currently utilized suffer from several difficulties and complications, which often necessitate manual intervention and crude approximations. Because the modeling pipeline spans multiple disciplines, the benefits of integrating a computer-aided design (CAD) component for the geometric modeling tasks has been largely overlooked. Upon completion of our review, we adopt this philosophy and present a CAD-integrated template-based modeling framework that streamlines the construction of solid non-uniform rational B-spline vascular models for performing isogeometric finite element analysis. Examples of arterial models for mouse and human circles of Willis and a porcine coronary tree are presented.

Notes

Acknowledgements

Support from the William Stamps Farish Fund, Portuguese CoLab grant no UTA06-894, and William & Ella Owens Medical Research Foundation grant no UTA17-000357 are gratefully acknowledged. The authors would also like to thank Zbigniew Starosolski and Ananth Annapragada at the Texas Children’s Hospital, Raja Muthupillai at St. Luke’s Hospital, and Andrea Gobin and Doris Taylor at Texas Heart Institute for providing the imaging data, and for their help with image processing.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Taylor CA, Figueroa CA (2009) Patient-specific modeling of cardiovascular mechanics. Annu Rev Biomed Eng 11:109–134.  https://doi.org/10.1146/annurev.bioeng.10.061807.160521 Google Scholar
  2. 2.
    Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann Biomed Eng 26:975–987.  https://doi.org/10.1114/1.140 Google Scholar
  3. 3.
    Taylor CA, Hughes TJR, Zarins CK (1996) Computational investigations in vascular disease. Comput Phys 10:224–232Google Scholar
  4. 4.
    Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman DA (2008) An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput 46:1097–1112.  https://doi.org/10.1007/s11517-008-0420-1 Google Scholar
  5. 5.
    Taylor CA, Steinman DA (2010) Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions. Ann Biomed Eng 38:1188–1203.  https://doi.org/10.1007/s10439-010-9901-0 Google Scholar
  6. 6.
    Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 38:3195–3209.  https://doi.org/10.1007/s10439-010-0083-6 Google Scholar
  7. 7.
    Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reservescientific basis. J Am Coll Cardiol 61:2233–2241.  https://doi.org/10.1016/j.jacc.2012.11.083 Google Scholar
  8. 8.
    Rogers C, Tseng DY, Squire JC, Edelman ER (1999) Balloon-artery interactions during stent placement. Circ Res 84:378–383.  https://doi.org/10.1161/01.RES.84.4.378 Google Scholar
  9. 9.
    Sankaran S, Moghadam ME, Kahn AM, Tseng EE, Guccione JM, Marsden AL (2012) Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Ann Biomed Eng 40:2228–2242.  https://doi.org/10.1007/s10439-012-0579-3 Google Scholar
  10. 10.
    Hossain SS, Hossainy SFA, Bazilevs Y, Calo VM, Hughes TJR (2012) Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls. Comput Mech 49:213–242.  https://doi.org/10.1007/s00466-011-0633-2 MathSciNetzbMATHGoogle Scholar
  11. 11.
    Hossain SS, Hughes TJR, Decuzzi P (2013) Vascular deposition patterns for catheter-injected nanoparticles in an inflamed patient-specific arterial tree. Biomech Model Mechanobiol.  https://doi.org/10.1007/s10237-013-0520-1 Google Scholar
  12. 12.
    Hossain SS, Zhang Y, Fu X, Brunner G, Singh J, Hughes TJR, Shah D, Decuzzi P (2015) Magnetic resonance imaging-based computational modelling of blood flow and nanomedicine deposition in patients with peripheral arterial disease. J R Soc Interface 12:20150001.  https://doi.org/10.1098/rsif.2015.0001 Google Scholar
  13. 13.
    Hossain SS, Zhang Y, Liang X, Hussain F, Ferrari M, Hughes TJ, Decuzzi P (2012) In silico vascular modeling for personalized nanoparticle delivery. Nanomedicine.  https://doi.org/10.2217/nnm.12.124 Google Scholar
  14. 14.
    Cebral JR, Hendrickson S, Putman CM (2009) Hemodynamics in a lethal basilar artery aneurysm just before its rupture. Am J Neuroradiol 30:95–98.  https://doi.org/10.3174/ajnr.A1312 Google Scholar
  15. 15.
    Doyle BJ, Callanan A, Burke PE, Grace PA, Walsh MT, Vorp DA, McGloughlin TM (2009) Vessel asymmetry as an additional diagnostic tool in the assessment of abdominal aortic aneurysms. J Vasc Surg 49:443–454.  https://doi.org/10.1016/j.jvs.2008.08.064 Google Scholar
  16. 16.
    Neal ML, Kerckhoffs R (2010) Current progress in patient-specific modeling. Brief Bioinform 11:111–126.  https://doi.org/10.1093/bib/bbp049 Google Scholar
  17. 17.
    Kim M, Taulbee DB, Tremmel M, Meng H (2008) Comparison of two stents in modifying cerebral aneurysm hemodynamics. Ann Biomed Eng 36:726–741.  https://doi.org/10.1007/s10439-008-9449-4 Google Scholar
  18. 18.
    Rayz VL, Boussel L, Lawton MT, Acevedo-Bolton G, Ge L, Young WL, Higashida RT, Saloner D (2008) Numerical modeling of the flow in intracranial aneurysms: prediction of regions prone to thrombus formation. Ann Biomed Eng 36:1793–1804.  https://doi.org/10.1007/s10439-008-9561-5 Google Scholar
  19. 19.
    Tan FPP, Soloperto G, Bashford S, Wood NB, Thom S, Hughes A, Xu XY (2008) Analysis of flow disturbance in a stenosed carotid artery bifurcation using two-equation transitional and turbulence models. J Biomech Eng 130:061008.  https://doi.org/10.1115/1.2978992 Google Scholar
  20. 20.
    Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comput Methods Appl Mech Eng 158:155–196.  https://doi.org/10.1016/S0045-7825(98)80008-X MathSciNetzbMATHGoogle Scholar
  21. 21.
    Valencia A, Morales H, Rivera R, Bravo E, Galvez M (2008) Blood flow dynamics in patient-specific cerebral aneurysm models: the relationship between wall shear stress and aneurysm area index. Med Eng Phys 30:329–340.  https://doi.org/10.1016/j.medengphy.2007.04.011 Google Scholar
  22. 22.
    Mihalef V, Ionasec RI, Sharma P, Georgescu B, Voigt I, Suehling M, Comaniciu D (2011) Patient-specific modelling of whole heart anatomy, dynamics and haemodynamics from four-dimensional cardiac CT images. Interface Focus 1:286–296Google Scholar
  23. 23.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195.  https://doi.org/10.1016/j.cma.2004.10.008 MathSciNetzbMATHGoogle Scholar
  24. 24.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322.  https://doi.org/10.1007/s00466-006-0084-3 MathSciNetzbMATHGoogle Scholar
  25. 25.
    Zhang Y, Bazilevs Y, Goswami S, Bajaj CL, Hughes TJR (2007) Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput Methods Appl Mech Eng 196:2943–2959.  https://doi.org/10.1016/j.cma.2007.02.009 MathSciNetzbMATHGoogle Scholar
  26. 26.
    Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550.  https://doi.org/10.1016/j.cma.2009.04.015 MathSciNetzbMATHGoogle Scholar
  27. 27.
    Hossain SS (2009) Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls. Dissertation, University of Texas at AustinGoogle Scholar
  28. 28.
    Auricchio F, Conti M, Ferraro M, Morganti S, Reali A, Taylor RL (2015) Innovative and efficient stent flexibility simulations based on isogeometric analysis. Comput Methods Appl Mech Eng 295:347–361.  https://doi.org/10.1016/j.cma.2015.07.011 MathSciNetzbMATHGoogle Scholar
  29. 29.
    Morganti S, Auricchio F, Benson DJ, Gambarin FI, Hartmann S, Hughes TJR, Reali A (2015) Patient-specific isogeometric structural analysis of aortic valve closure. Comput Methods Appl Mech Eng 284:508–520.  https://doi.org/10.1016/j.cma.2014.10.010 MathSciNetzbMATHGoogle Scholar
  30. 30.
    Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis : toward integration of CAD and FEA, 1st edn. Wiley, HobokenzbMATHGoogle Scholar
  31. 31.
    Autodesk AutoCAD (n.d.) http://www.autodesk.com/products/autocad/overview. Accessed 21 April 2016
  32. 32.
    SOLIDWORKS (n.d.) http://www.solidworks.com/. Accessed 21 April 2016
  33. 33.
    Rhinoceros (n.d.) http://www.rhino3d.com/. Accessed 21 April 2016
  34. 34.
    CATIA (n.d.) http://www.3ds.com/products-services/catia/. Accessed 21 April 2016
  35. 35.
    Piegl LA, Tiller W (1997) The NURBS book, 2nd edn. Springer, BerlinzbMATHGoogle Scholar
  36. 36.
    Prakash S, Ethier CR (2000) Requirements for mesh resolution in 3D computational hemodynamics. J Biomech Eng 123:134–144.  https://doi.org/10.1115/1.1351807 Google Scholar
  37. 37.
    Sankaran S, Grady L, Taylor CA (2015) Impact of geometric uncertainty on hemodynamic simulations using machine learning. Comput Methods Appl Mech Eng 297:167–190.  https://doi.org/10.1016/j.cma.2015.08.014 MathSciNetzbMATHGoogle Scholar
  38. 38.
    Lai Y, Liu L, Zhang YJ, Chen J, Fang E, Lua J (2015) Rhino 3D to Abaqus: a T-spline based isogeometric analysis software platform. In: Edited Volume of Modeling and Simulation in Science, Engineering and Technology Book Series devoted to AFSI 2014—a birthday celebration conference. Springer, BerlinGoogle Scholar
  39. 39.
    Lai Y, Zhang YJ, Liu L, Wei X, Fang E, Lua J (2017) Integrating CAD with Abaqus: a practical isogeometric analysis software platform for industrial applications. Comput Math Appl.  https://doi.org/10.1016/j.camwa.2017.03.032 MathSciNetzbMATHGoogle Scholar
  40. 40.
    Kuhl E, Maas R, Himpel G, Menzel A (2006) Computational modeling of arterial wall growth. Biomech Model Mechanobiol 6:321–331.  https://doi.org/10.1007/s10237-006-0062-x Google Scholar
  41. 41.
    Castro MA, Putman CM, Cebral JR (2006) Patient-specific computational modeling of cerebral aneurysms with multiple avenues of flow from 3D rotational angiography images. Acad Radiol 13:811–821.  https://doi.org/10.1016/j.acra.2006.03.011 Google Scholar
  42. 42.
    Cebral JR, Mut F, Sforza D, Löhner R, Scrivano E, Lylyk P, Putman C (2011) Clinical application of image-based CFD for cerebral aneurysms. Int J Numer Methods Biomed Eng 27:977–992.  https://doi.org/10.1002/cnm.1373 MathSciNetzbMATHGoogle Scholar
  43. 43.
    Huang Q, Xu J, Cheng J, Wang S, Wang K, Liu J-M (2013) Hemodynamic changes by flow diverters in rabbit aneurysm models: a computational fluid dynamic study based on micro-computed tomography reconstruction. Stroke 44:1936–1941.  https://doi.org/10.1161/STROKEAHA.113.001202 Google Scholar
  44. 44.
    Karmonik C, Bismuth J, Davies MG, Shah DJ, Younes HK, Lumsden AB (2011) A computational fluid dynamics study pre- and post-stent graft placement in an acute type B aortic dissection. Vasc Endovasc Surg 45:157–164.  https://doi.org/10.1177/1538574410389342 Google Scholar
  45. 45.
    Suh G-Y, Les AS, Tenforde AS, Shadden SC, Spilker RL, Yeung JJ, Cheng CP, Herfkens RJ, Dalman RL, Taylor CA (2010) Quantification of particle residence time in abdominal aortic aneurysms using magnetic resonance imaging and computational fluid dynamics. Ann Biomed Eng 39:864–883.  https://doi.org/10.1007/s10439-010-0202-4 Google Scholar
  46. 46.
    Graziano F, Russo VM, Wang W, Khismatullin D, Ulm AJ (2013) 3D computational fluid dynamics of a treated vertebrobasilar giant aneurysm: a multistage analysis. Am J Neuroradiol 34:1387–1394.  https://doi.org/10.3174/ajnr.A3373 Google Scholar
  47. 47.
    He Y, Terry CM, Nguyen C, Berceli SA, Shiu Y-TE, Cheung AK (2013) Serial analysis of lumen geometry and hemodynamics in human arteriovenous fistula for hemodialysis using magnetic resonance imaging and computational fluid dynamics. J Biomech 46:165–169.  https://doi.org/10.1016/j.jbiomech.2012.09.005 Google Scholar
  48. 48.
    Marsden AL, Bernstein AJ, Reddy VM, Shadden SC, Spilker RL, Chan FP, Taylor CA, Feinstein JA (2009) Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics. J Thorac Cardiovasc Surg 137:394–403.e2.  https://doi.org/10.1016/j.jtcvs.2008.06.043 Google Scholar
  49. 49.
    Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198:3902–3914.  https://doi.org/10.1016/j.cma.2009.08.013 MathSciNetzbMATHGoogle Scholar
  50. 50.
    Hsu M-C, Akkerman I, Bazilevs Y (2011) High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput Fluids 49:93–100.  https://doi.org/10.1016/j.compfluid.2011.05.002 MathSciNetzbMATHGoogle Scholar
  51. 51.
    Hsu M-C, Kamensky D, Xu F, Kiendl J, Wang C, Wu MCH, Mineroff J, Reali A, Bazilevs Y, Sacks MS (2015) Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput Mech 55:1211–1225.  https://doi.org/10.1007/s00466-015-1166-x zbMATHGoogle Scholar
  52. 52.
    Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual-based variational multiscale method. J Comput Phys 229:3402–3414.  https://doi.org/10.1016/j.jcp.2010.01.008 MathSciNetzbMATHGoogle Scholar
  53. 53.
    Isogeometric analysis in electromagnetics: B-splines approximation (n.d.) http://www.sciencedirect.com/science/article/pii/S0045782509004010. Accessed 18 October 2016
  54. 54.
    Bove EL, de Leval MR, Migliavacca F, Guadagni G, Dubini G (2003) Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the norwood procedure for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 126:1040–1047.  https://doi.org/10.1016/S0022-5223(03)00698-6 Google Scholar
  55. 55.
    Ghaffari M, Hsu C-Y, Linninger AA (2015) Automatic reconstruction and generation of structured hexahedral mesh for non-planar bifurcations in vascular networks. In: Gernaey KV, Huusom JK, Gani R (eds) Computer aided chemical engineering. Elsevier, Amsterdam, pp 635–640.  https://doi.org/10.1016/B978-0-444-63578-5.50101-8 http://www.sciencedirect.com/science/article/pii/B9780444635785501018. Accessed 23 March 2016
  56. 56.
    Antiga L, Ene-Iordache B, Caverni L, Paolo Cornalba G, Remuzzi A (2002) Geometric reconstruction for computational mesh generation of arterial bifurcations from CT angiography. Comput Med Imaging Graph 26:227–235.  https://doi.org/10.1016/S0895-6111(02)00020-4 Google Scholar
  57. 57.
    Birchall D, Zaman A, Hacker J, Davies G, Mendelow D (2006) Analysis of haemodynamic disturbance in the atherosclerotic carotid artery using computational fluid dynamics. Eur Radiol 16:1074–1083.  https://doi.org/10.1007/s00330-005-0048-6 Google Scholar
  58. 58.
    Calo VM, Brasher NF, Bazilevs Y, Hughes TJR (2008) Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow. Comput Mech 43:161–177.  https://doi.org/10.1007/s00466-008-0321-z zbMATHGoogle Scholar
  59. 59.
    Shah JJ, Mäntylä M (1995) Parametric and feature-based CAD/CAM: concepts, techniques, and applications. Wiley, New YorkGoogle Scholar
  60. 60.
    Hardwick MF, Clay RL, Boggs PT, Walsh EJ, Larzelere AR, Altshuler A (2005) DART system analysis, Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550Google Scholar
  61. 61.
    Cohen E, Martin T, Kirby RM, Lyche T, Riesenfeld RF (2010) Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis. Comput Methods Appl Mech Eng 199:334–356.  https://doi.org/10.1016/j.cma.2009.09.010 MathSciNetzbMATHGoogle Scholar
  62. 62.
    Sederberg TW, Finnigan GT, Li X, Lin H, Ipson H (2008) Watertight trimmed NURBS. ACM Trans Graph 27:79:1–79:8.  https://doi.org/10.1145/1360612.1360678 Google Scholar
  63. 63.
    Breitenberger M, Apostolatos A, Philipp B, Wüchner R, Bletzinger K-U (2015) Analysis in computer aided design: nonlinear isogeometric B-Rep analysis of shell structures. Comput Methods Appl Mech Eng 284:401–457.  https://doi.org/10.1016/j.cma.2014.09.033 MathSciNetzbMATHGoogle Scholar
  64. 64.
    Belibassakis KA, Gerostathis TP, Kostas KV, Politis CG, Kaklis PD, Ginnis AI, Feurer C (2013) A BEM-isogeometric method for the ship wave-resistance problem. Ocean Eng 60:53–67.  https://doi.org/10.1016/j.oceaneng.2012.12.030 Google Scholar
  65. 65.
    Auricchio F, Conti M, Ferrazzano C, Sgueglia GA (2014) A simple framework to generate 3D patient-specific model of coronary artery bifurcation from single-plane angiographic images. Comput Biol Med 44:97–109.  https://doi.org/10.1016/j.compbiomed.2013.10.027 Google Scholar
  66. 66.
    Bogunović H, Pozo JM, Villa-Uriol MC, Majoie CBLM, van den Berg R, van Andel HAFG, Macho JM, Blasco J, Román LS, Frangi AF (2011) Automated segmentation of cerebral vasculature with aneurysms in 3DRA and TOF-MRA using geodesic active regions: an evaluation study. Med Phys 38:210–222.  https://doi.org/10.1118/1.3515749 Google Scholar
  67. 67.
    Brina O, Ouared R, Bonnefous O, van Nijnatten F, Bouillot P, Bijlenga P, Schaller K, Lovblad K-O, Grünhagen T, Ruijters D, Pereira VM (2014) Intra-aneurysmal flow patterns: illustrative comparison among digital subtraction angiography, optical flow, and computational fluid dynamics. Am J Neuroradiol 35:2348–2353.  https://doi.org/10.3174/ajnr.A4063 Google Scholar
  68. 68.
    Cebral JR, Castro MA, Appanaboyina S, Putman CM, Millan D, Frangi AF (2005) Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans Med Imaging 24:457–467Google Scholar
  69. 69.
    Coogan JS, Chan FP, Taylor CA, Feinstein JA (2011) Computational fluid dynamic simulations of aortic coarctation comparing the effects of surgical- and stent-based treatments on aortic compliance and ventricular workload. Catheter Cardiovasc Interv 77:680–691.  https://doi.org/10.1002/ccd.22878 Google Scholar
  70. 70.
    Ho H, Norris S, Mithraratne K, Hunter P (2008) 1D and 3D blood flow modelling for patient specific cerebral vasculature and aneurysm. J Biomech 41(Supplement 1):S8.  https://doi.org/10.1016/S0021-9290(08)70008-3 Google Scholar
  71. 71.
    Kheyfets VO, Rios L, Smith T, Schroeder T, Mueller J, Murali S, Lasorda D, Zikos A, Spotti J, Reilly JJ Jr, Finol EA (2015) Patient-specific computational modeling of blood flow in the pulmonary arterial circulation. Comput Methods Programs Biomed 120:88–101.  https://doi.org/10.1016/j.cmpb.2015.04.005 Google Scholar
  72. 72.
    Les AS, Shadden SC, Figueroa CA, Park JM, Tedesco MM, Herfkens RJ, Dalman RL, Taylor CA (2010) Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann Biomed Eng 38:1288–1313.  https://doi.org/10.1007/s10439-010-9949-x Google Scholar
  73. 73.
    Ma D, Dargush GF, Natarajan SK, Levy EI, Siddiqui AH, Meng H (2012) Computer modeling of deployment and mechanical expansion of neurovascular flow diverter in patient-specific intracranial aneurysms. J Biomech 45:2256–2263.  https://doi.org/10.1016/j.jbiomech.2012.06.013 Google Scholar
  74. 74.
    Marsden AL (2014) Optimization in cardiovascular modeling. Annu Rev Fluid Mech 46:519–546.  https://doi.org/10.1146/annurev-fluid-010313-141341 MathSciNetzbMATHGoogle Scholar
  75. 75.
    Migliavacca F, Dubini G (2005) Computational modeling of vascular anastomoses. Biomech Model Mechanobiol 3:235–250.  https://doi.org/10.1007/s10237-005-0070-2 Google Scholar
  76. 76.
    Moench T, Gasteiger R, Janiga G, Theisel H, Preim B (2011) Context-aware mesh smoothing for biomedical applications. Comput Graph 35:755–767.  https://doi.org/10.1016/j.cag.2011.04.011 Google Scholar
  77. 77.
    Moore JA, Rutt BK, Karlik SJ, Yin K, Ethier CR (1999) Computational blood flow modeling based on in vivo measurements. Ann Biomed Eng 27:627–640.  https://doi.org/10.1114/1.221 Google Scholar
  78. 78.
    Nagy R, Csobay-Novák C, Lovas A, Sótonyi P, Bojtár I (2015) Non-invasive in vivo time-dependent strain measurement method in human abdominal aortic aneurysms: towards a novel approach to rupture risk estimation. J Biomech 48:1876–1886.  https://doi.org/10.1016/j.jbiomech.2015.04.030 Google Scholar
  79. 79.
    Park S-T, Yoon K, Ko YB, Suh DC (2013) Computational fluid dynamics of intracranial and extracranal arteries using 3-dimensional angiography: technical considerations with physician’s point of view. Neurointervention 8:92.  https://doi.org/10.5469/neuroint.2013.8.2.92 Google Scholar
  80. 80.
    Peiró J, Sherwin SJ, Giordana S (2008) Automatic reconstruction of a patient-specific high-order surface representation and its application to mesh generation for CFD calculations. Med Biol Eng Comput 46:1069–1083.  https://doi.org/10.1007/s11517-008-0390-3 Google Scholar
  81. 81.
    Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor H-U, Giesel FL (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5:335–341.  https://doi.org/10.1007/s11548-010-0476-x Google Scholar
  82. 82.
    Sazonov I, Yeo SY, Bevan RLT, Xie X, van Loon R, Nithiarasu P (2011) Modelling pipeline for subject-specific arterial blood flow—a review. Int J Numer Methods Biomed Eng 27:1868–1910.  https://doi.org/10.1002/cnm.1446 MathSciNetzbMATHGoogle Scholar
  83. 83.
    Sheidaei A, Hunley SC, Zeinali-Davarani S, Raguin LG, Baek S (2011) Simulation of abdominal aortic aneurysm growth with updating hemodynamic loads using a realistic geometry. Med Eng Phys 33:80–88.  https://doi.org/10.1016/j.medengphy.2010.09.012 Google Scholar
  84. 84.
    Wittek A, Grosland NM, Joldes GR, Magnotta V, Miller K (2015) From finite element meshes to clouds of points: a review of methods for generation of computational biomechanics models for patient-specific applications. Ann Biomed Eng 44:3–15.  https://doi.org/10.1007/s10439-015-1469-2 Google Scholar
  85. 85.
    Pekkan K, Whited B, Kanter K, Sharma S, de Zelicourt D, Sundareswaran K, Frakes D, Rossignac J, Yoganathan AP (2008) Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM). Med Biol Eng Comput 46:1139–1152.  https://doi.org/10.1007/s11517-008-0377-0 Google Scholar
  86. 86.
    Rossignac JR, Pekkan K, Whited B, Kanter K, Sharma S, Yoganathan AP (2006) Surgem: next generation CAD tools for interactive patient-specific surgical planning and hemodynamic analysis. https://smartech.gatech.edu/handle/1853/13133. Accessed 17 April 2016
  87. 87.
    Lopez-Perez A, Sebastian R, Ferrero JM (2015) Three-dimensional cardiac computational modelling: methods, features and applications. Biomed Eng Online 14:1–31.  https://doi.org/10.1186/s12938-015-0033-5 Google Scholar
  88. 88.
    Llamas I, Powell A, Rossignac JR, Shaw CD (2004) Bender: a virtual ribbon for deforming 3D shapes in biomedical and styling applications. https://smartech.gatech.edu/handle/1853/3734. Accessed 21 April 2016
  89. 89.
    SOLIDWORKS Solutions for Life Sciences Professionals (n.d.) http://www.solidworks.com/sw/industries/life-sciences-overview-industries.htm. Accessed 19 April 2016
  90. 90.
    Research with Geomagic Sensable (n.d.) http://www.geomagic.com/en/industries/research. Accessed 19 April 2016
  91. 91.
    Materialise 3-matic (n.d.) http://biomedical.materialise.com/3-matic. Accessed 19 April 2016
  92. 92.
    BioCAD (n.d.) http://www.biomodel.com/biocad.html. Accessed 19 April 2016
  93. 93.
    Zygote (n.d.) https://www.zygote.com/. Accessed 19 April 2016
  94. 94.
    Zygote: Featured Solid 3D CAD Models (n.d.) https://www.zygote.com/cad-models. Accessed 19 April 2016
  95. 95.
    Golovanov N (2014) Geometric modeling: the mathematics of shapes, Reprint edition. CreateSpace Independent Publishing PlatformGoogle Scholar
  96. 96.
    starlab-mcfskel (n.d.) https://github.com/ataiya/starlab-mcfskel. Accessed 28 August 2015
  97. 97.
    vmtk—the Vascular Modelling Toolkit (n.d.) http://www.vmtk.org/. Accessed 20 April 2016
  98. 98.
    Materialise Mimics Innovation Suite (n.d.) http://biomedical.materialise.com/mis. Accessed 5 May 2016
  99. 99.
    Grasshopper—algorithmic modeling for Rhino (n.d.) http://www.grasshopper3d.com/. Accessed 26 June 2017
  100. 100.
    Starosolski Z, Villamizar CA, Rendon D, Paldino MJ, Milewicz DM, Ghaghada KB, Annapragada AV (2015) Ultra high-resolution in vivo computed tomography imaging of mouse cerebrovasculature using a long circulating blood pool contrast agent. Sci Rep.  https://doi.org/10.1038/srep10178 Google Scholar
  101. 101.
    Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30:1323–1341.  https://doi.org/10.1016/j.mri.2012.05.001 Google Scholar
  102. 102.
    Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22:61–79.  https://doi.org/10.1023/A:1007979827043 zbMATHGoogle Scholar
  103. 103.
    Parzy E, Miraux S, Jean-Michel F, Thiaudière E (2009) In vivo quantification of blood velocity in mouse carotid and pulmonary arteries by ECG-triggered 3D time-resolved magnetic resonance angiography. NMR Biomed 22:532–537Google Scholar
  104. 104.
    LaCourse DE (ed) (1995) Handbook of solid modeling. McGraw-Hill, New YorkGoogle Scholar
  105. 105.
    Corney J, Lim T (2001) 3D modeling with ACIS, 2nd edn. Saxe-Coburg, StirlingGoogle Scholar
  106. 106.
    VTK: Class List (n.d.) http://www.vtk.org/doc/release/7.0/html/annotated.html. Accessed 20 April 2016
  107. 107.
    Larrabide I, Villa-Uriol M-C, Cárdenes R, Barbarito V, Carotenuto L, Geers AJ, Morales HG, Pozo JM, Mazzeo MD, Bogunović H, Omedas P, Riccobene C, Macho JM, Frangi AF (2012) AngioLab—a software tool for morphological analysis and endovascular treatment planning of intracranial aneurysms. Comput Methods Programs Biomed 108:806–819.  https://doi.org/10.1016/j.cmpb.2012.05.006 Google Scholar
  108. 108.
    Russian National 3D Kernel, Isicad.Net. (n.d.). http://isicad.net/articles.php?article_num=15189. Accessed 21 April 2016
  109. 109.
    Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman DA (2008) An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput 46:1097–1112.  https://doi.org/10.1007/s11517-008-0420-1 Google Scholar
  110. 110.
    Tang D, Yang C, Zheng J, Woodard PK, Sicard GA, Saffitz JE, Yuan C (2004) 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Ann Biomed Eng 32:947–960.  https://doi.org/10.1023/B:ABME.0000032457.10191.e0 Google Scholar
  111. 111.
    Moore S, David T, Chase JG, Arnold J, Fink J (2006) 3D models of blood flow in the cerebral vasculature. J Biomech 39:1454–1463.  https://doi.org/10.1016/j.jbiomech.2005.04.005 Google Scholar
  112. 112.
    Kaazempur-Mofrad MR, Isasi AG, Younis HF, Chan RC, Hinton DP, Sukhova G, LaMuraglia GM, Lee RT, Kamm RD (2004) Characterization of the atherosclerotic carotid bifurcation using MRI, finite element modeling, and histology. Ann Biomed Eng 32:932–946.  https://doi.org/10.1023/B:ABME.0000032456.16097.e0 Google Scholar
  113. 113.
    Cebral JR, Castro MA, Soto O, Löhner R, Alperin N (2003) Blood-flow models of the circle of Willis from magnetic resonance data. J Eng Math 47:369–386.  https://doi.org/10.1023/B:ENGI.0000007977.02652.02 MathSciNetzbMATHGoogle Scholar
  114. 114.
    Thomas JB, Milner JS, Rutt BK, Steinman DA (2003) Reproducibility of image-based compmutational fluid dynamics models of the human carotid bifurcation. Ann Biomed Eng 31:132–141.  https://doi.org/10.1114/1.1540102 Google Scholar
  115. 115.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng 198:3613–3621.  https://doi.org/10.1016/j.cma.2008.08.020 MathSciNetzbMATHGoogle Scholar
  116. 116.
    Boutsianis E, Dave H, Frauenfelder T, Poulikakos D, Wildermuth S, Turina M, Ventikos Y, Zund G (2004) Computational simulation of intracoronary flow based on real coronary geometry. Eur J Cardiothorac Surg 26:248–256.  https://doi.org/10.1016/j.ejcts.2004.02.041 Google Scholar
  117. 117.
    Auricchio F, Conti M, De Beule M, De Santis G, Verhegghe B (2011) Carotid artery stenting simulation: from patient-specific images to finite element analysis. Med Eng Phys 33:281–289.  https://doi.org/10.1016/j.medengphy.2010.10.011 Google Scholar
  118. 118.
    Frauenfelder T, Lotfey M, Boehm T, Wildermuth S (2006) Computational fluid dynamics: hemodynamic changes in abdominal aortic aneurysm after stent-graft implantation. Cardiovasc Intervent Radiol 29:613–623.  https://doi.org/10.1007/s00270-005-0227-5 Google Scholar
  119. 119.
    Conti CA, Della Corte A, Votta E, Del Viscovo L, Bancone C, De Santo LS, Redaelli A (2010) Biomechanical implications of the congenital bicuspid aortic valve: a finite element study of aortic root function from in vivo data. J Thorac Cardiovasc Surg 140:890–896.e2.  https://doi.org/10.1016/j.jtcvs.2010.01.016 Google Scholar
  120. 120.
    Appanaboyina S, Mut F, Löhner R, Putman C, Cebral J (2009) Simulation of intracranial aneurysm stenting: Techniques and challenges. Comput Methods Appl Mech Eng 198:3567–3582.  https://doi.org/10.1016/j.cma.2009.01.017 zbMATHGoogle Scholar
  121. 121.
    Grinberg L, Cheever E, Anor T, Madsen JR, Karniadakis GE (2010) Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study. Ann Biomed Eng 39:297–309.  https://doi.org/10.1007/s10439-010-0132-1 Google Scholar
  122. 122.
    Tse KM, Chiu P, Lee HP, Ho P (2011) Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J Biomech 44:827–836.  https://doi.org/10.1016/j.jbiomech.2010.12.014 Google Scholar
  123. 123.
    Morlacchi S, Colleoni SG, Cárdenes R, Chiastra C, Diez JL, Larrabide I, Migliavacca F (2013) Patient-specific simulations of stenting procedures in coronary bifurcations: two clinical cases. Med Eng Phys 35:1272–1281.  https://doi.org/10.1016/j.medengphy.2013.01.007 Google Scholar
  124. 124.
    De Santis G, De Beule M, Van Canneyt K, Segers P, Verdonck P, Verhegghe B (2011) Full-hexahedral structured meshing for image-based computational vascular modeling. Med Eng Phys 33:1318–1325.  https://doi.org/10.1016/j.medengphy.2011.06.007 Google Scholar
  125. 125.
    Wang Q, Sirois E, Sun W (2012) Patient-specific modeling of biomechanical interaction in transcatheter aortic valve deployment. J Biomech 45:1965–1971.  https://doi.org/10.1016/j.jbiomech.2012.05.008 Google Scholar
  126. 126.
    Gallo D, Santis GD, Negri F, Tresoldi D, Ponzini R, Massai D, Deriu MA, Segers P, Verhegghe B, Rizzo G, Morbiducci U (2011) On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow. Ann Biomed Eng 40:729–741.  https://doi.org/10.1007/s10439-011-0431-1 Google Scholar
  127. 127.
    Autodesk Alias (n.d.) http://www.autodesk.com/products/alias-products/overview. Accessed 21 April 2016
  128. 128.
    Autodesk Fusion 360 (n.d.) http://www.autodesk.com/products/fusion-360/overview. Accessed 21 April 2016
  129. 129.
    Autodesk Inventor (n.d.) http://www.autodesk.com/products/inventor/overview. Accessed 21 April 2016
  130. 130.
    BRL-CAD: Open Source Solid Modeling (n.d.) http://brlcad.org/. Accessed 21 April 2016
  131. 131.
    nanoCAD (n.d.) http://nanocad.com/. Accessed 21 April 2016
  132. 132.
    NX: Siemens PLM Software (n.d.) https://www.plm.automation.siemens.com/en_us/products/nx/. Accessed 21 April 2016
  133. 133.
    OPEN CASCADE (n.d.) http://www.opencascade.com/. Accessed 21 April 2016
  134. 134.
    PTC Creo (n.d.) http://www.ptc.com/cad/creo. Accessed 21 April 2016
  135. 135.
    Solid Edge: Siemens PLM Software (n.d.) https://www.plm.automation.siemens.com/en_us/products/solid-edge/. Accessed 21 April 2016
  136. 136.
    pyFormex: “Unlike traditional CAD systems, pyFormex uses a powerful (Python based) scripting language as the basic user input method, making it very well suited for automated and repeated (parametric) design procedures.,” (n.d.) http://www.nongnu.org/pyformex/. Accessed 20 April 2016
  137. 137.
    Prakash S, Ethier CR (2001) Requirements for mesh resolution in 3D computational hemodynamics. J Biomech Eng 123:134–144Google Scholar
  138. 138.
    Castro MA, Olivares MCA, Putman CM, Cebral JR (2014) Unsteady wall shear stress analysis from image-based computational fluid dynamic aneurysm models under Newtonian and Casson rheological models. Med Biol Eng Comput 52:827–839.  https://doi.org/10.1007/s11517-014-1189-z Google Scholar
  139. 139.
    Cárdenes R, Díez JL, Duchateau N, Pashaei A, Frangi AF (2013) Model generation of coronary artery bifurcations from CTA and single plane angiography. Med Phys 40:013701.  https://doi.org/10.1118/1.4769118 Google Scholar
  140. 140.
    Haggerty CM, Restrepo M, Tang E, de Zélicourt DA, Sundareswaran KS, Mirabella L, Bethel J, Whitehead KK, Fogel MA, Yoganathan AP (2014) Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: a computational fluid dynamics analysis. J Thorac Cardiovasc Surg 148:1481–1489.  https://doi.org/10.1016/j.jtcvs.2013.11.060 Google Scholar
  141. 141.
    Caruso MV, Gramigna V, Rossi M, Serraino GF, Renzulli A, Fragomeni G (2015) A computational fluid dynamics comparison between different outflow graft anastomosis locations of Left Ventricular Assist Device (LVAD) in a patient-specific aortic model. Int J Numer Methods Biomed Eng.  https://doi.org/10.1002/cnm.2700 Google Scholar
  142. 142.
    DeGroff CG (2007) Modeling the Fontan circulation: where we are and where we need to go. Pediatr Cardiol 29:3–12.  https://doi.org/10.1007/s00246-007-9104-0 Google Scholar
  143. 143.
    Barber DC, Oubel E, Frangi AF, Hose DR (2007) Efficient computational fluid dynamics mesh generation by image registration. Med Image Anal 11:648–662.  https://doi.org/10.1016/j.media.2007.06.011 Google Scholar
  144. 144.
    Zhang Y, Bazilevs Y, Goswami S, Bajaj CL, Hughes TJR (2007) Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput Methods Appl Mech Eng 196:2943–2959.  https://doi.org/10.1016/j.cma.2007.02.009 MathSciNetzbMATHGoogle Scholar
  145. 145.
    Scott MA, Borden MJ, Verhoosel CV, Sederberg TW, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of T-splines. Int J Numer Methods Eng 88:126–156.  https://doi.org/10.1002/nme.3167 zbMATHGoogle Scholar
  146. 146.
    Toshniwal D, Speleers H, Hiemstra RR, Hughes TJR (2016) Multi-degree C^k smooth polar splines: a framework for design and analysis. https://www.ices.utexas.edu/media/reports/2016/1617.pdf
  147. 147.
    Wang KC, Dutton RW, Taylor CA (1999) Improving geometric model construction for blood flow modeling. IEEE Eng Med Biol Mag 18:33–39.  https://doi.org/10.1109/51.805142 Google Scholar

Copyright information

© CIMNE, Barcelona, Spain 2017

Authors and Affiliations

  1. 1.Institute for Computational Engineering and SciencesThe University of Texas at AustinAustinUSA
  2. 2.Department of Molecular CardiologyTexas Heart InstituteHoustonUSA
  3. 3.Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations