Archives of Computational Methods in Engineering

, Volume 25, Issue 1, pp 143–164 | Cite as

Big Data in Experimental Mechanics and Model Order Reduction: Today’s Challenges and Tomorrow’s Opportunities

  • Jan Neggers
  • Olivier Allix
  • François Hild
  • Stéphane Roux
S.I.: Machine learning in computational mechanics


Since the turn of the century experimental solid mechanics has undergone major changes with the generalized use of images. The number of acquired data has literally exploded and one of today’s challenges is related to the saturation of mining procedures through such big data sets. With respect to digital image/volume correlation one of tomorrow’s pathways is to better control and master this data flow with procedures that are optimized for extracting the sought information with minimum uncertainties and maximum robustness. In this paper emphasis is put on various hierarchical identification procedures. Based on such structures a posteriori model/data reductions are performed in order to ease and make the exploitation of the experimental information far more efficient. Some possibilities related to other model order reduction techniques like the proper generalized decomposition are discussed and new opportunities are sketched.



It is a pleasure to acknowledge the support of BPI France within the “DICCIT” project.

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Sutton M, Orteu J, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New YorkGoogle Scholar
  2. 2.
    Dufour JE, Hild F, Roux S (2015) Shape, displacement and mechanical properties from isogeometric multiview stereocorrelation. J Strain Anal 50(7):470CrossRefGoogle Scholar
  3. 3.
    Baruchel J, Buffière J, Maire E, Merle P, Peix G (eds) (2000) X-Ray tomography in material sciences. Hermès Science, ParisGoogle Scholar
  4. 4.
    Maire E, Withers PJ (2014) Quantitative X-ray tomography. Int Mat Rev 59(1):1CrossRefGoogle Scholar
  5. 5.
    Helfen L, Baumbach T, Mikulfk P, Kiel D, Pernot P, Cloetens P, Baruchel J (2005) High-resolution three-dimensional imaging of flat objects by synchrotron-radiation computed laminography. Appl Phys Lett 86(7):071915CrossRefGoogle Scholar
  6. 6.
    Helfen L, Myagotin A, Rack A, Pernot P, Mikulfk P, Di Michiel M, Baumbach T (2007) Synchrotron-radiation computed laminography for high-resolution three-dimensional imaging of flat devices. Phys Stat Sol 204:2760–2765CrossRefGoogle Scholar
  7. 7.
    Benoit A, Guérard S, Gillet B, Guillot G, Hild F, Mitton D, Périé J, Roux S (2009) 3D analysis from micro-MRI during in situ compression on cancellous bone. J Biomech 42:2381–2386CrossRefGoogle Scholar
  8. 8.
    Huang D, Swanson E, Lin C, Schuman J, Stinson W, Chang W, Hee M, Flotte T, Gregory K, Puliafito C, Fujimoto J (1991) Optical coherence tomography. Science 254(5035):1178–1181CrossRefGoogle Scholar
  9. 9.
    Grédiac M, Hild F (eds) (2012) Full-field measurements and identification in solid mechanics. ISTE/Wiley, LondonGoogle Scholar
  10. 10.
    Oden J, Belytschko T, Fish J, Hughes T, Johnson C, Keyes D, Laub A, Petzold L, Srolovitz D, Yip S (2006) Simulation-based engineering sciences. Final report, NFS.
  11. 11.
    Carpiuc A (2015) Innovative tests for characterizing mixed-mode fracture of concrete: from pre-defined to interactive and hybrid tests. Ph.D. ThesisGoogle Scholar
  12. 12.
    Fayolle X, Calloch S, Hild F (2007) Controlling testing machines with digital image correlation. Exp Tech 31(3):57–63CrossRefGoogle Scholar
  13. 13.
    Durif E, Réthoré J, Combescure A, Fregonese M, Chaudet P (2012) Controlling stress intensity factors during a fatigue crack propagation using digital image correlation and a load shedding procedure. Exp Mech 52:1021–1031CrossRefGoogle Scholar
  14. 14.
    Fayolle X, Hild F (2013) Controlling stress intensity factor histories with digital images. Exp Mech 54:305–314CrossRefGoogle Scholar
  15. 15.
    Darema F (2004) Dynamic data driven applications systems: a new paradigm for application simulations and measurements. Springer, BerlinGoogle Scholar
  16. 16.
    Sutton M (2013) Computer vision-based, noncontacting deformation measurements in mechanics: a generational transformation. Appl Mech Rev 65:050802CrossRefGoogle Scholar
  17. 17.
    Sutton M, Hild F (2015) Recent advances and perspectives in digital image correlation. Exp Mech 55(1):1–8CrossRefGoogle Scholar
  18. 18.
    Sutton MA, Li N, Joy D, Reynolds AP, Li X (2007) Scanning electron microscopy for quantitative small and large deformation measurements part i: sem imaging at magnifications from 200 to 10,000. Exp Mech 47(6):775–787CrossRefGoogle Scholar
  19. 19.
    Teyssedre H, Roux S, Régnier G, Tracz A (2011) Filtering out slow-scan drifts in atomic force microscopy images. J Strain Anal 46(5):361–367CrossRefGoogle Scholar
  20. 20.
    Han K, Ciccotti M, Roux S (2010) Measuring nanoscale stress intensity factors with an atomic force microscope. EuroPhys Lett 89(6):66003CrossRefGoogle Scholar
  21. 21.
    Neggers J, Hoefnagels J, Hild F, Roux S, Geers M (2014) Direct stress-strain measurements from bulged membranes using topography image correlation. Exp Mech 54(5):717–727CrossRefGoogle Scholar
  22. 22.
    Maynadier A, Poncelet M, Lavernhe-Taillard K, Roux S (2011) One-shot measurement of thermal and kinematic fields: infra-red image correlation (IRIC). Exp Mech 52(3):241–255CrossRefGoogle Scholar
  23. 23.
    Hild F, Roux S (2012) Digital image correlation. Wiley, WeinheimzbMATHGoogle Scholar
  24. 24.
    Réthoré J, Roux S, Hild F (2007) From pictures to extended finite elements: extended digital image correlation (X-DIC). C R Mécanique 335:131–137CrossRefzbMATHGoogle Scholar
  25. 25.
    Hild F, Roux S (2012) Comparison of local and global approaches to digital image correlation. Exp Mech 52(9):1503–1519CrossRefGoogle Scholar
  26. 26.
    Tarantola A (1987) Inverse problems theory. Methods for data fitting and model parameter estimation. Elsevier, SouthamptonzbMATHGoogle Scholar
  27. 27.
    Kaipio J, Somersalo E (2006) Statistical and computational inverse problems. Springer, New YorkzbMATHGoogle Scholar
  28. 28.
    Mottershead J, Link M, Friswell M (2011) The sensitivity method in finite element model updating: a tutorial. Mech Syst Signal Proc 25(7):2275–2296CrossRefGoogle Scholar
  29. 29.
    Leclerc H, Périé J, Roux S, Hild F (2009) Integrated digital image correlation for the identification of mechanical properties. Springer, Berlin, pp 161–171zbMATHGoogle Scholar
  30. 30.
    Réthoré J (2010) A fully integrated noise robust strategy for the identification of constitutive laws from digital images. Int J Num Methods Eng 84(6):631–660CrossRefzbMATHGoogle Scholar
  31. 31.
    Mathieu F, Leclerc H, Hild F, Roux S (2015) Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC. Exp Mech 55(1):105–119CrossRefGoogle Scholar
  32. 32.
    Neggers J, Hoefnagels J, Geers M, Hild F, Roux S (2015) Time-resolved integrated digital image correlation. Int J Num Methods Eng 203(3):157–182MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Hild F, Bouterf A, Chamoin L, Mathieu F, Neggers J, Pled F, Tomičević Z, Roux S (2016) Toward 4D mechanical correlation. Adv Mech Simul Eng Sci 47:495–503Google Scholar
  34. 34.
    Tikhonov A, Arsenin V (1977) Solutions of ill-posed problems. Wiley, New YorkzbMATHGoogle Scholar
  35. 35.
    Lindner D, Mathieu F, Hild F, Allix O, Ha Minh C, Paulien-Camy O (2015) On the evaluation of stress triaxiality fields in a notched titanium alloy sample via integrated DIC. J Appl Mech 82(7):071014CrossRefGoogle Scholar
  36. 36.
    Bertin M, Hild F, Roux S, Mathieu F, Leclerc H, Aimedieu P (2016) Integrated digital image correlation applied to elasto-plastic identification in a biaxial experiment. J Strain Anal 51(2):118–131CrossRefGoogle Scholar
  37. 37.
    Chatterjee A (2000) An introduction to the proper orthogonal decomposition. Curr Sci 78(7):808Google Scholar
  38. 38.
    Maday Y, Ronquist EM (2004) The reduced basis element method: application to a thermal fin problem. SIAM J Sci Comput 26(1):240MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Ladevèze P (2014) Separated representations and PGD-based model reduction. Springer, New York, pp 91–152zbMATHGoogle Scholar
  40. 40.
    Chinesta F, Ammar A, Cueto E (2010) Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch Comput Methods Eng 17(4):327MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Grepl M, Maday Y, Nguyen N, Patera A (2007) ESAIM. Modélisation mathématique et analyse numérique 41(3):575Google Scholar
  42. 42.
    Barrault M, Maday Y, Nguyen N, Patera A (2004) An ‘empirical interpolation’ method: application to efficient reduced-basis discretization o f partial differential equations. C R Acad Sci 339:667MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Chaturentabut S, Sorensen D (2010) Nonlinear model reduction via discrete empirical interpolation. Soc Ind Appl Math 32(5):2737MathSciNetzbMATHGoogle Scholar
  44. 44.
    Ryckelynck D (2009) Hyper-reduction of mechanical models involving internal variables. Int J Numer Methods Eng 77(1):75MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Farhat C, Avery P, Chapman T, Cortial J (2014) Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency. Int J Numer Methods Eng 98(9):625. doi: 10.1002/nme.4668 MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Néron D, Ladevèze P (2012) In: ASME (ed) Proceedings of the 11th Biennial conference on engineering systems design and analysis (ESDA 2012)Google Scholar
  47. 47.
    Ladevèze P (1999) Nonlinear computational structural mechanics: new approaches and non-incremental methods of calculation. Mechanical engineering series. Springer, New YorkCrossRefzbMATHGoogle Scholar
  48. 48.
    Néron D, Boucard PA, Relun N (2015) Time-space PGD for the rapid solution of 3D nonlinear parametrized problems in the many-query context. Int J Numer Methods Eng 103(4):275MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Relun N, Néron D, Boucard PA (2013) A model reduction technique based on the PGD for elastic-viscoplastic computational analysis. Comput Mech 51:83MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Allix O, Vidal P (2002) A new multi-solution approach suitable for structural identification problems. Comput Methods Appl Mech Eng 191(1):2727MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Mahnken R, Stein E (1996) Parameter identification for viscoplastic models based on analytical derivatives of a least-squares functional and stability investigations. Int J Plast 12(4):451CrossRefzbMATHGoogle Scholar
  52. 52.
    Constantinescu A, Tardieu N (2001) On the identification of elastoviscoplastic constitutive laws from indentation tests. Inverse Probl Eng 9:19CrossRefGoogle Scholar
  53. 53.
    Nadal E, Chinesta F, Diez P, Fuenmayor F, Deniac F (2015) Real time parameter identification and solution reconstruction from experimental data using the proper generalized decomposition. Comput Methods Appl Mech Eng 296:113MathSciNetCrossRefGoogle Scholar
  54. 54.
    Vitse M, Néron D, Boucard PA (2014) Virtual charts of solutions for parametrized nonlinear equations. Comput Mech 54(6):1529MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Gomes Perini L, Passieux JC, Périé JN (2014) A multigrid PGD-based algorithm for volumetric displacement fields measurements. Strain 50(4):355CrossRefGoogle Scholar
  56. 56.
    Passieux JC, Périé JN (2012) High resolution digital image correlation using proper generalized decomposition: PGD-DIC. Int J Num Methods Eng 92(6):531MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Besnard G, Leclerc H, Roux S, Hild F (2012) Analysis of image series through global digital image correlation. J Strain Anal 47(4):214CrossRefGoogle Scholar
  58. 58.
    J. Neggers, F. Mathieu, S. Roux, F. Hild, in Photomechanics (2015)Google Scholar
  59. 59.
    Neggers J, Mathieu F, Roux S, Hild F (2017) Reducing full-field identification cost by using Quasi-Newton methods. Springer, New York, pp 135–140Google Scholar
  60. 60.
    Kononen J, Bubendorf L, Kallionimeni A, Bärlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallionimeni OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4(7):844–847CrossRefGoogle Scholar
  61. 61.
    Sundberg SA (2000) High-throughput and ultra-high-throughput screening: solution-and cell-based approaches. Curr Opin Biotechnol 11(1):47CrossRefGoogle Scholar
  62. 62.
    Corbett PT, Leclaire J, Vial L, West KR, Wietor JL, Sanders JK, Otto S (2006) Dynamic combinatorial chemistry. Chem Rev 106(9):3652–3711CrossRefGoogle Scholar
  63. 63.
    Sarikaya M, Tamerler C, Jen AKY, Schulten K, Baneyx F (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2(9):577–585CrossRefGoogle Scholar
  64. 64.
    Bertin MBR, Hild F, Roux S (2016) Optimization of a cruciform specimen geometry for the identification of constitutive parameters based upon full-field measurements. Strain 52(4):307–323CrossRefGoogle Scholar
  65. 65.
    Allix O, Feissel P, Nguyen H (2005) Identification strategy in the presence of corrupted measurements. Eng Comput 22(5–6):487–504CrossRefzbMATHGoogle Scholar
  66. 66.
    Beaubier B, Dufour J, Hild F, Roux S, Lavernhe-Taillard S, Lavernhe-Taillard K (2014) AD-based calibration and shape measurement with stereoDIC. Exp Mech 54(3):329CrossRefGoogle Scholar
  67. 67.
    Dufour JE, Beaubier B, Hild F, Roux S (2015) CAD-based displacement measurements with stereo-DIC. Exp Mech 55(9):1657CrossRefGoogle Scholar
  68. 68.
    Limodin N, Réthoré J, Adrien J, Buffière J, Hild F, Roux S (2011) Analysis and artifact correction for volume correlation measurements using tomographic images from a laboratory X-ray source. Exp Mech 51(6):959CrossRefGoogle Scholar
  69. 69.
    Dufour J, Hild F, Roux S (2014) Integrated digital image correlation for the evaluation and correction of optical distortions. Opt Lasers Eng 56:121–133CrossRefGoogle Scholar
  70. 70.
    Leclerc H, Roux S, Hild F, Leclerc H, Roux S, Hild F (2015) Projection savings in CT-based digital volume correlation. Exp Mech 55(1):275–287CrossRefGoogle Scholar
  71. 71.
    Taillandier-Thomas T, Roux S, Hild F (2016) Soft route to 4D tomography. Phys Rev Lett 117(2):025501MathSciNetCrossRefGoogle Scholar
  72. 72.
    Neggers J, Mathieu F, Hild F, Roux S, Swiergiel N (2017) Improving full-field identification using progressive model enrichments. Int J Solids Struct 203:157–182Google Scholar
  73. 73.
    Hild F, Bouterf A, Roux S (2015) Damage measurements via DIC. Int J Fract 191(1):77CrossRefGoogle Scholar
  74. 74.
    Hild F, Raka B, Baudequin M, Roux S, Cantelaube F (2002) Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation. Appl Opt 41(32):6815–6828CrossRefGoogle Scholar
  75. 75.
    Peherstorfer B, Willcox K (2015) Dynamic data-driven reduced-order models. Comput Methods Appl Mech Eng 291:21MathSciNetCrossRefGoogle Scholar
  76. 76.
    Kirchdoerfer T, Ortiz M (2016) Data-driven computational mechanics. Comput Methods Appl Mech Eng 304:81–101MathSciNetCrossRefGoogle Scholar
  77. 77.
    Ibanez R, Abisset-Chavanne E, Aguado JV, Gonzalez D, Cueto E, Chinesta F (2017) kPCA-Based parametric solutions within the PGD framework. Arch Comput Methods Eng. doi: 10.1007/s11831-016-9173-4
  78. 78.
    Germain P, Nguyen Q, Suquet P (1983) Continuum thermodynamics. J Appl Mech 50:1010CrossRefzbMATHGoogle Scholar
  79. 79.
    Lemaitre J, Chaboche J (1990) Mechanics of solid materials. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2017

Authors and Affiliations

  1. 1.LMT, ENS Paris-Saclay, CNRS, Université Paris-SaclayCachanFrance
  2. 2.Institut Universitaire de FranceParisFrance

Personalised recommendations