Advertisement

Archives of Computational Methods in Engineering

, Volume 24, Issue 4, pp 869–890 | Cite as

Complex Hybrid Numerical Model in Application to Failure Modelling in Multiphase Materials

  • Konrad PerzynskiEmail author
  • Lukasz Madej
Original Paper

Abstract

Development of a discrete/continuum numerical model of different failure modes operating in dual phase steels during deformation is the main goal of the research. Proposed approach is based on a random cellular automata (RCA) model incorporated in a fully coupled manner to the finite element (FE) framework. As a result, the RCAFE model that can take into account fracture initiation within martensite phase, delamination between martensite and ferrite phases, ferrite phase fracture and delamination between ferrite and ferrite grain boundaries was established. Details on the developed cellular automata model including random space definition, state of CA cells as well as properly defined transition rules are recapitulated in the work. Developed data bridging technique between RCA and FE models is discussed within that part. Particular attention, however, is put on model parameters identification stage, which was realized with the inverse analysis technique on the basis of in situ tensile tests. Finally, examples of model application to multiscale numerical simulation of three point bending, which was selected as a case study, are presented to highlight predictive capabilities of the developed RCAFE solution.

Keywords

Ferrite Martensite Monte Carlo Cellular Automaton Cellular Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was funded by the National Science Centre under the 2014/14/E/ST8/00332 project. FEM calculations were realized at the ACK CYFRONET AGH under the computing grant no. MNiSW/IBM_BC_HS21/AGH/076/2010.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Pushkareva I (2009) Evolution microstructurale d’un acier dual phase. Oprimisation de la resistance a l’endommagement. Doctoral dissertation, Ecole des Mines NancyGoogle Scholar
  2. 2.
    Szewczyk AF, Gurland J (1982) A study of the deformation and fracture of a dual-phase steel. Metall Trans A 13:1821–1826. doi: 10.1007/BF02647838 CrossRefGoogle Scholar
  3. 3.
    Speich G, Miller R (1979) Mechanical properties of ferrite-martensite steels. The Metallurgical Society of AIME, Warrendale, pp 145–182Google Scholar
  4. 4.
    Balliger N (1982) Advances in the physical metallurgy and applications of steels. The Metals Society, LondonGoogle Scholar
  5. 5.
    Ahmad E, Manzoor T, Ali KL, Akhter JI (2000) Effect of microvoid formation on the tensile properties of dual-phase steel. J Mater Eng Perform 9:306–310. doi: 10.1361/105994900770345962 CrossRefGoogle Scholar
  6. 6.
    Maire E, Bouaziz O, Di Michiel M, Verdu C (2008) Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography. Acta Mater 56:4954–4964. doi: 10.1016/j.actamat.2008.06.015 CrossRefGoogle Scholar
  7. 7.
    Avramovic-Cingara G, Ososkov Y, Jain MK, Wilkinson DS (2009) Effect of martensite distribution on damage behaviour in DP600 dual phase steels. Mater Sci Eng A 516:7–16. doi: 10.1016/j.msea.2009.03.055 CrossRefGoogle Scholar
  8. 8.
    Okayasu M, Sato K, Mizuno M et al (2008) Fatigue properties of ultra-fine grained dual phase ferrite/martensite low carbon steel. Int J Fatigue 30:1358–1365. doi: 10.1016/j.ijfatigue.2007.10.011 CrossRefGoogle Scholar
  9. 9.
    Zok F, Embury JD (1990) On the analysis of delamination fractures in high-strength steels. Metall Trans A 21:2565–2575. doi: 10.1007/BF02647002 CrossRefGoogle Scholar
  10. 10.
    Kadkhodapour J, Schmauder S, Raabe D et al (2011) Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels. Acta Mater 59:4387–4394. doi: 10.1016/j.actamat.2011.03.062 CrossRefGoogle Scholar
  11. 11.
    Golovashchenko SF, Gillard AJ, Mamutov AV (2013) Formability of dual phase steels in electrohydraulic forming. J Mater Process Technol 213:1191–1212. doi: 10.1016/j.jmatprotec.2013.01.026 CrossRefGoogle Scholar
  12. 12.
    Dalloz A, Besson J, Gourgues-Lorenzon A-F et al (2009) Effect of shear cutting on ductility of a dual phase steel. Eng Fract Mech 76:1411–1424. doi: 10.1016/j.engfracmech.2008.10.009 CrossRefGoogle Scholar
  13. 13.
    Soyarslan C, Malekipour Gharbi M, Tekkaya AE (2012) A combined experimental–numerical investigation of ductile fracture in bending of a class of ferritic–martensitic steel. Int J Solids Struct 49:1608–1626. doi: 10.1016/j.ijsolstr.2012.03.009 CrossRefGoogle Scholar
  14. 14.
    Ramazani A, Abbasi M, Prahl U, Bleck W (2012) Failure analysis of DP600 steel during the cross-die test. Comput Mater Sci 64:101–105. doi: 10.1016/j.commatsci.2012.01.031 CrossRefGoogle Scholar
  15. 15.
    Behrens B-A, Bouguecha A, Vucetic M, Peshekhodov I (2012) Characterisation of the quasi-static flow and fracture behaviour of dual-phase steel sheets in a wide range of plane stress states. Arch Civil Mech Eng 12:397–406. doi: 10.1016/j.acme.2012.06.017 CrossRefGoogle Scholar
  16. 16.
    Prawoto Y, Fanone M, Shahedi S et al (2012) Computational approach using Johnson–Cook model on dual phase steel. Comput Mater Sci 54:48–55. doi: 10.1016/j.commatsci.2011.10.021 CrossRefGoogle Scholar
  17. 17.
    Vajragupta N, Uthaisangsuk V, Schmaling B et al (2012) A micromechanical damage simulation of dual phase steels using XFEM. Comput Mater Sci 54:271–279. doi: 10.1016/j.commatsci.2011.10.035 CrossRefGoogle Scholar
  18. 18.
    Yu TT, Liu P (2011) Improved implementation of the extended finite element method for stress analysis around cracks. Arch Civil Mech Eng 11:787–805. doi: 10.1016/S1644-9665(12)60116-2 CrossRefGoogle Scholar
  19. 19.
    Jovicic G, Zivkovic M, Jovicic N et al (2010) Improvement of algorithm for numerical crack modelling. Arch Civil Mech Eng 10:19–35. doi: 10.1016/S1644-9665(12)60134-4 CrossRefGoogle Scholar
  20. 20.
    Madej Ł, Perzyński K (2013) Rozwój wieloskalowych metod obliczeniowych w zastosowaniu do modelowania procesów odkształcenia plastycznego. Hutnik, Wiadomości Hutnicze 80:242–247Google Scholar
  21. 21.
    Neumann J (1966) Theory of self-replicating automata. University of Illinois Press, UrbanaGoogle Scholar
  22. 22.
    Bos C, Mecozzi MG, Sietsma J (2010) A microstructure model for recrystallisation and phase transformation during the dual-phase steel annealing cycle. Comput Mater Sci 48:692–699. doi: 10.1016/j.commatsci.2010.03.010 CrossRefGoogle Scholar
  23. 23.
    Salehi MS, Serajzadeh S (2012) Simulation of static recrystallization in non-isothermal annealing using a coupled cellular automata and finite element model. Comput Mater Sci 53:145–152. doi: 10.1016/j.commatsci.2011.09.026 CrossRefGoogle Scholar
  24. 24.
    Peranio N, Li YJ, Roters F, Raabe D (2010) Microstructure and texture evolution in dual-phase steels: competition between recovery, recrystallization, and phase transformation. Mater Sci Eng A 527:4161–4168. doi: 10.1016/j.msea.2010.03.028 CrossRefGoogle Scholar
  25. 25.
    Thiessen R, Sietsma J, Palmer T et al (2007) Phase-field modelling and synchrotron validation of phase transformations in martensitic dual-phase steel. Acta Mater 55:601–614. doi: 10.1016/j.actamat.2006.08.053 CrossRefGoogle Scholar
  26. 26.
    Wang M, Huang DW, Luo RM (2011) Shear failure of tungsten alloy at mesoscale modeled by movable cellular automata. Theor Appl Fract Mech 56:162–168. doi: 10.1016/j.tafmec.2011.11.004 CrossRefGoogle Scholar
  27. 27.
    Pak MH, Lee CY, Chai YS (2007) Fracture toughness calculation by movable cellular automata method. Key Eng Mater 353–358:774–779. doi: 10.4028/www.scientific.net/KEM.353-358.774 CrossRefGoogle Scholar
  28. 28.
    Ivanov D, Ivanov S, Lomov S, Verpoest I (2009) Strain mapping analysis of textile composites. Opt Lasers Eng 47:360–370. doi: 10.1016/j.optlaseng.2008.05.013 CrossRefGoogle Scholar
  29. 29.
    Franklin FJ, Garnham JE, Fletcher DI et al (2008) Modelling rail steel microstructure and its effect on crack initiation. Wear 265:1332–1341. doi: 10.1016/j.wear.2008.03.027 CrossRefGoogle Scholar
  30. 30.
    Khvastunkov MS, Leggoe JW (2004) Adapting cellular automata to model failure in spatially heterogeneous ductile alloys. Scr Mater 51:309–314. doi: 10.1016/j.scriptamat.2004.04.028 CrossRefGoogle Scholar
  31. 31.
    Khvastunkov MS, Leggoe JW (2004) Modeling the influence of the nature of spatial heterogeneity on the deformation and failure of porous ductile alloys. Mater Sci Eng A 383:347–355. doi: 10.1016/j.msea.2004.05.031 CrossRefGoogle Scholar
  32. 32.
    Matic P, Geltmacher AB (2001) A cellular automaton-based technique for modeling mesoscale damage evolution. Comput Mater Sci 20:120–141. doi: 10.1016/S0927-0256(00)00133-6 CrossRefGoogle Scholar
  33. 33.
    Madej Ł, Mrozek A, Kuś W et al (2008) Concurrent and upscaling methods in multi scale modelling—case studies. Comput Methods Mater Sci 8:1–15Google Scholar
  34. 34.
    Beynon J, Das S, Howard I et al (2002) The combination of cellular automata and finite elements for the study of fracture; the CAFE model of fracture. EMAS Publishing, Krakow, pp 241–248Google Scholar
  35. 35.
    Beynon JH, Das S, Howard IC, Chterenlikht A (2002) Extending the local approach to fracture: methods for direct incorporation of microstructural effects into finite element models of fracture. New and emerging computational methods: applications to fracture, damage, and reliability. ASME, New York, pp 229–237Google Scholar
  36. 36.
    Shterenlikht A, Howard IC (2006) The CAFE model of fracture—application to a TMCR steel. Fatigue Fract Eng Mater Struct 29:770–787. doi: 10.1111/j.1460-2695.2006.01031.x CrossRefGoogle Scholar
  37. 37.
    Makarov PV, Romanova VA (2000) Mesoscale plastic flow generation and development for polycrystals. Theor Appl Fract Mech 33:1–7. doi: 10.1016/S0167-8442(99)00045-2 CrossRefGoogle Scholar
  38. 38.
    Metropolis N, Rosenbluth AW, Rosenbluth MN et al (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087. doi: 10.1063/1.1699114 CrossRefGoogle Scholar
  39. 39.
    Blikstein P, Tschiptschin AP (1999) Monte Carlo simulation of grain growth. Materi Res. doi: 10.1590/S1516-14391999000300004 Google Scholar
  40. 40.
    Zeghadi A, N’guyen F, Forest S et al (2007) Ensemble averaging stress–strain fields in polycrystalline aggregates with a constrained surface microstructure – Part 1: anisotropic elastic behaviour. Philos Mag 87:1401–1424. doi: 10.1080/14786430601009509 CrossRefGoogle Scholar
  41. 41.
    Choi S-H, Kim DW, Seong BS, Rollett AD (2011) 3-D simulation of spatial stress distribution in an AZ31 Mg alloy sheet under in-plane compression. Int J Plast 27:1702–1720. doi: 10.1016/j.ijplas.2011.05.014 CrossRefzbMATHGoogle Scholar
  42. 42.
    Sieradzki L, Madej L (2013) A perceptive comparison of the cellular automata and Monte Carlo techniques in application to static recrystallization modeling in polycrystalline materials. Comput Mater Sci 67:156–173. doi: 10.1016/j.commatsci.2012.08.047 CrossRefGoogle Scholar
  43. 43.
    Madej L (2012) Realistic description of dual phase steels morphology on the basis of Monte Carlo method. Comput Methods Mater Sci 12:197–206Google Scholar
  44. 44.
    Anderson MP, Grest GS, Srolovitz DJ (1989) Computer simulation of normal grain growth in three dimensions. Philos Mag Part B 59:293–329. doi: 10.1080/13642818908220181 CrossRefGoogle Scholar
  45. 45.
    Poulsen SO, Voorhees PW, Lauridsen EM (2013) Three-dimensional simulations of microstructural evolution in polycrystalline dual-phase materials with constant volume fractions. Acta Mater 61:1220–1228. doi: 10.1016/j.actamat.2012.10.032 CrossRefGoogle Scholar
  46. 46.
    Ganchenkova MG, Borodin VA (2004) Monte-Carlo simulation of crack propagation in polycrystalline materials. Mater Sci Eng A 387–389:372–376. doi: 10.1016/j.msea.2003.12.088 CrossRefGoogle Scholar
  47. 47.
    Arafin MA, Szpunar JA (2009) A Markov Chain–Monte Carlo model for intergranular stress corrosion crack propagation in polycrystalline materials. Mater Sci Eng A 513–514:254–266. doi: 10.1016/j.msea.2009.01.072 CrossRefGoogle Scholar
  48. 48.
    Lawson L (1997) Microstructural fracture in metal fatigue. Int J Fatigue 19:61–67. doi: 10.1016/S0142-1123(97)90037-2 CrossRefGoogle Scholar
  49. 49.
    Fyllingen Ø, Hopperstad OS, Lademo O-G, Langseth M (2009) Estimation of forming limit diagrams by the use of the finite element method and Monte Carlo simulation. Comput Struct 87:128–139. doi: 10.1016/j.compstruc.2008.07.002 CrossRefGoogle Scholar
  50. 50.
    Hao S, Liu WK, Moran B et al (2004) Multi-scale constitutive model and computational framework for the design of ultra-high strength, high toughness steels. Comput Methods Appl Mech Eng 193:1865–1908. doi: 10.1016/j.cma.2003.12.026 CrossRefzbMATHGoogle Scholar
  51. 51.
    Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29:6443–6453. doi: 10.1103/PhysRevB.29.6443 CrossRefGoogle Scholar
  52. 52.
    Latapie A, Farkas D (2004) Molecular dynamics investigation of the fracture behavior of nanocrystalline-Fe. Phys Rev B. doi: 10.1103/PhysRevB.69.134110 Google Scholar
  53. 53.
    Wang G, Ostoja-Starzewski M, Radziszewski P, Ourriban M (2006) Particle modeling of dynamic fragmentation—II: fracture in single- and multi-phase materials. Comput Mater Sci 35:116–133. doi: 10.1016/j.commatsci.2005.03.011 CrossRefGoogle Scholar
  54. 54.
    Burczyński T, Kuś W, Mrozek A et al (2009) Advanced continuum-atomistic model of materials based on coupled boundary element and molecular approaches. In: Pyrz R, Rauhe JC (eds) IUTAM symposium on modelling nanomaterials and nanosystems. Springer, Dordrecht, pp 231–240CrossRefGoogle Scholar
  55. 55.
    Madej L, Rauch L, Perzynski K, Cybulka P (2011) Digital Material Representation as an efficient tool for strain inhomogeneities analysis at the micro scale level. Arch Civil Mech Eng 11:661–679. doi: 10.1016/S1644-9665(12)60108-3 CrossRefGoogle Scholar
  56. 56.
    Cornwell C, Noack R, Abed E (2006) Three-dimensional digital microstructures, project report documentation prepared by High Performance Technologies. http://handle.dtic.mil/100.2/ADA481869
  57. 57.
    Bernacki M, Digonnet H, Resk H et al (2007) Development of numerical tools for the multiscale modelling of recrystallization in metals, based on a digital material framework. AIP Conference Proceedings. AIP, pp 375–380Google Scholar
  58. 58.
    Logé R, Bernacki M, Resk H et al (2008) Linking plastic deformation to recrystallization in metals using digital microstructures. Philos Mag 88:3691–3712. doi: 10.1080/14786430802502575 CrossRefGoogle Scholar
  59. 59.
    Raabe D, Becker R (2010) Recrystallization simulation by coupling of a crystal plasticity FEM with a cellular automaton method. Modell Simul Mater Sci Eng 8:445–462CrossRefGoogle Scholar
  60. 60.
    Loge R, Resk H, Sun Z et al (2010) Modelling of plastic deformation and recrystalization of polycrystals using digital microstructures and adaptive meshing techniques. Steel Res Int 81:1420–1425Google Scholar
  61. 61.
    Milenin A, Kustra P (2008) The multi-scale FEM simulation of wire fracture during drawing of perlitic steel. Steel Res Int 79:717–722CrossRefGoogle Scholar
  62. 62.
    Rauch Ł, Madej Ł (2010) Application of the automatic image processing in modelling of the deformation mechanisms based on the digital representation of microstructure. Int J Multiscale Comput Eng 8:343–356CrossRefGoogle Scholar
  63. 63.
    Bala P, Tsyrulin K, Jaksch H, Stepien M (2015) 3D reconstruction and characterization of carbides in Ni-based high carbon alloy in a FIB-SEM system. Int J Mater Res 106:764–770. doi: 10.3139/146.111225 CrossRefGoogle Scholar
  64. 64.
    Madej Ł (2010) Digital material representation—new perspectives in numerical simulations of inhomogenous deformation. Comput Methods Mater Sci 10:143–155Google Scholar
  65. 65.
    Cao J, Zhuang W, Wang S, Lin J (2010) Development of a VGRAIN system for CPFE analysis in micro-forming applications. Int J Adv Manuf Technol 47:981–991. doi: 10.1007/s00170-009-2135-3 CrossRefGoogle Scholar
  66. 66.
    Madej Ł (2010) Development of the modeling strategy for the strain localization simulation based on the digital material representation. AGH University Press, KrakowGoogle Scholar
  67. 67.
    Perzynski K, Madej L, Wang J et al (2014) Numerical investigation of influence of the martensite volume fraction on DP steels fracture behavior on the basis of digital material representation model. Metall Mater Trans A 45:5852–5865. doi: 10.1007/s11661-014-2579-4 CrossRefGoogle Scholar
  68. 68.
    Perzynski K, Madej L (2016) Fracture modeling in dual-phase steel grades based on the random cellular automata finite element approach. Simulation 92:195–207. doi: 10.1177/0037549715622280 CrossRefGoogle Scholar
  69. 69.
    Trebacz L, Madej L, Wajda W, Paul H (2008) Simulation of plastic behaviour of FCC metals accounting for latice orientation, 8th. World Congress on Computational Mechanics (WCCM8) 5th. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008), Venice, Italy, 30 June–5 July 2008 Google Scholar
  70. 70.
    Wajda W, Paul H (2009) Modeling of microstructure and texture evolution of channel-die deformed aluminum bicrystals with {100} < 001 >/{110} < 011 > grains orientation. Comput Methods Mater Sci 9:277–282Google Scholar
  71. 71.
    Greer JR, Oliver WC, Nix WD (2005) Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater 53:1821–1830. doi: 10.1016/j.actamat.2004.12.031 CrossRefGoogle Scholar
  72. 72.
    Fei H, Abraham A, Chawla N, Jiang H (2012) Evaluation of micro-pillar compression tests for accurate determination of elastic–plastic constitutive relations. J Appl Mech 79:061011. doi: 10.1115/1.4006767 CrossRefGoogle Scholar
  73. 73.
    Schwiedrzik J, Raghavan R, Bürki A et al (2014) In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone. Nat Mater 13:740–747. doi: 10.1038/nmat3959 CrossRefGoogle Scholar
  74. 74.
    Madej L, Kruzel P, Cybulka P et al (2012) Generation of dedicated finite element meshes for multiscale applications with Delaunay triangulation and adaptive finite element—cellular automata algorithms. Comput Methods Mater Sci 12:85–96Google Scholar
  75. 75.
    Fischer-Cripps AC (2011) Nanoindentation. Mech Eng Ser. doi: 10.1007/978-1-4419-9872-9 CrossRefGoogle Scholar
  76. 76.
    Perzynski K, Sitko M, Madej L (2014) Numerical modelling of fracture based on coupled cellular automata finite element approach. Lect Notes Comput Sci 8751:156–165CrossRefGoogle Scholar
  77. 77.
    Ghadbeigi H, Pinna C, Celotto S (2013) Failure mechanisms in DP600 steel: initiation, evolution and fracture. Mater Sci Eng A 588:420–431. doi: 10.1016/j.msea.2013.09.048 CrossRefGoogle Scholar
  78. 78.
    Ghadbeigi H, Pinna C, Celotto S, Yates JR (2010) Local plastic strain evolution in a high strength dual-phase steel. Mater Sci Eng A 527:5026–5032. doi: 10.1016/j.msea.2010.04.052 CrossRefGoogle Scholar
  79. 79.
    Kadkhodapour J, Butz A, Ziaei Rad S (2011) Mechanisms of void formation during tensile testing in a commercial, dual-phase steel. Acta Mater 59:2575–2588. doi: 10.1016/j.actamat.2010.12.039 CrossRefGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2016

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations