Archives of Computational Methods in Engineering

, Volume 23, Issue 4, pp 735–779 | Cite as

Toward Predictive Multiscale Modeling of Vascular Tumor Growth

Computational and Experimental Oncology for Tumor Prediction
  • J. Tinsley Oden
  • Ernesto A. B. F. Lima
  • Regina C. Almeida
  • Yusheng Feng
  • Marissa Nichole Rylander
  • David Fuentes
  • Danial Faghihi
  • Mohammad M. Rahman
  • Matthew DeWitt
  • Manasa Gadde
  • J. Cliff Zhou
Original Paper


New directions in medical and biomedical sciences have gradually emerged over recent years that will change the way diseases are diagnosed and treated and are leading to the redirection of medicine toward patient-specific treatments. We refer to these new approaches for studying biomedical systems as predictive medicine, a new version of medical science that involves the use of advanced computer models of biomedical phenomena, high-performance computing, new experimental methods for model data calibration, modern imaging technologies, cutting-edge numerical algorithms for treating large stochastic systems, modern methods for model selection, calibration, validation, verification, and uncertainty quantification, and new approaches for drug design and delivery, all based on predictive models. The methodologies are designed to study events at multiple scales, from genetic data, to sub-cellular signaling mechanisms, to cell interactions, to tissue physics and chemistry, to organs in living human subjects. The present document surveys work on the development and implementation of predictive models of vascular tumor growth, covering aspects of what might be called modeling-and-experimentally based computational oncology. The work described is that of a multi-institutional team, centered at ICES with strong participation by members at M. D. Anderson Cancer Center and University of Texas at San Antonio. This exposition covers topics on signaling models, cell and cell-interaction models, tissue models based on multi-species mixture theories, models of angiogenesis, and beginning work of drug effects. A number of new parallel computer codes for implementing finite-element methods, multi-level Markov Chain Monte Carlo sampling methods, data classification methods, stochastic PDE solvers, statistical inverse algorithms for model calibration and validation, models of events at different spatial and temporal scales is presented. Importantly, new methods for model selection in the presence of uncertainties fundamental to predictive medical science, are described which are based on the notion of Bayesian model plausibilities. Also, as part of this general approach, new codes for determining the sensitivity of model outputs to variations in model parameters are described that provide a basis for assessing the importance of model parameters and controlling and reducing the number of relevant model parameters. Model specific data is to be accessible through careful and model-specific platforms in the Tumor Engineering Laboratory. We describe parallel computer platforms on which large-scale calculations are run as well as specific time-marching algorithms needed to treat stiff systems encountered in some phase-field mixture models. We also cover new non-invasive imaging and data classification methods that provide in vivo data for model validation. The study concludes with a brief discussion of future work and open challenges.


Tumor growth models Bayesian calibration and validation 3D tumor platforms Image processing 


  1. 1.
    Abraham FF, Broughton JQ, Bernstein N, Kaxiras E (1998) Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhys Lett (EPL) 44(6):783CrossRefGoogle Scholar
  2. 2.
    Adams BM, Bauman LE, Bohnhoff WJ, Dalbey KR, Ebeida MS, Eddy JP, Eldred MS, Hough PD, Hu KT, Jakeman JD, Swiler LP, Vigil DM (2009) Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 5.4 user’s manual. Technical report, Sandia technical report SAND2010-2183. Sandia National Laboratories, Livermore, CAGoogle Scholar
  3. 3.
    Albano G, Giorno V (2006) A stochastic model in tumor growth. J Theor Biol 242(2):329–336MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Albano G, Giorno V, Román-Román P, Torres-Ruiz F (2012) Inference on a stochastic two-compartment model in tumor growth. Comput Stat Data Anal 56:1723–1736MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK (2006) Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8(11):1195CrossRefGoogle Scholar
  6. 6.
    Almeida RC, Oden JT (2010) Solution verification, goal-oriented adaptive methods for stochastic advectiondiffusion problems. Comput Methods Appl Mech Eng 199(3740):2472–2486MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Anderson ARA, Chaplain MAJ (1995) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60:857–899MATHCrossRefGoogle Scholar
  8. 8.
    Antoine E, Vlachos P, Rylander MN (2014) Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng Part B 20(6):683–696CrossRefGoogle Scholar
  9. 9.
    Antoine E, Vlachos P, Rylander MN (2015) Tunable collagen I hydrogels for engineered physiological tissue micro-environments. PloS (epub ahead of print) 10(3):1–18Google Scholar
  10. 10.
    Ariffin AB, Forde PF, Jahangeer S, Soden DM, Hinchion J (2014) Releasing pressure in tumors: what do we know so far and where do we go from here? A review. Cancer Res 74(10):2655–2662CrossRefGoogle Scholar
  11. 11.
    Arroyo AG, Iruela-Arispe ML (2010) Extracellular matrix, inflammation, and the angiogenic response. Cardiovasc Res 86:226235CrossRefGoogle Scholar
  12. 12.
    Avants BB, Epstein CL, Grossman M, Gee JC (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41CrossRefGoogle Scholar
  13. 13.
    Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Rupp K, Smith BF, Zhang H (2014) PETSc web page.
  14. 14.
    Bao A, Phillips WT, Goins B, McGuff HS, Zheng X, Woolley FR, Natarajan M, Santoyo C, Miller FR, Otto RA (2006) Setup and characterization of a human head and neck squamous cell carcinoma xenograft model in nude rats. Otolaryngol Head Neck Surg 135(6):853–857CrossRefGoogle Scholar
  15. 15.
    Beck JL, Yuen KV (2004) Model selection using response measurements: Bayesian probabilistic approach. J Eng Mech 130(2):192–203CrossRefGoogle Scholar
  16. 16.
    Beg MF, Miller MI, Trouvé A, Younes L (2005) Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comput Vis 61(2):139–157CrossRefGoogle Scholar
  17. 17.
    Bellomo N, Li NK, Maini PK (2008) On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math Models Methods Appl Sci 18(4):593–646MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Berg JM, Tymoczko JL, Stryer L (2006) Biochemistry, 6th edn. W. H. Freeman, San FranciscoGoogle Scholar
  19. 19.
    Berger JO (1985) Statistical decision theory and bayesian analysis. Springer, BerlinMATHCrossRefGoogle Scholar
  20. 20.
    Buchanan CF, Rylander MN (2015) Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response. Biotechnol Bioeng 110(B):2063–2072Google Scholar
  21. 21.
    Buchanan CF, Verbridge SS, Vlachos PP, Rylander MN (2014) Flow shear stress regulates endothelial barrier function and expression of angiogenic factors in a 3D microfluidic tumor vascular model. Cell Adhesion Migr 8(5):517–524CrossRefGoogle Scholar
  22. 22.
    Buchanan CF, Voigt E, Szot CS, Freeman JW, Vlachos PP, Rylander MN (2013) Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization. Tissue Eng Part C Methods 20(1):64–75CrossRefGoogle Scholar
  23. 23.
    Byrne H, Drasdo D (2009) Individual-based and continuum models of growing cell populations: a comparison. J Math Biol 58(4–5):657–687MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Cacuci DG (2007) Sensitivity and uncertainty analysis: theory, vol 1. CRC Press, Boca RatonMATHGoogle Scholar
  25. 25.
    Calvetti D, Somersalo E (2007) Introduction to Bayesian scientific computing: ten lectures on subjective computing. Springer, BerlinMATHGoogle Scholar
  26. 26.
    Cao Y, Jiang Y, Li B, Feng X (2012) Biomechanical modeling of surface wrinkling of soft tissues with growth-dependent mechanical properties. Acta Mech Solida Sin 25(5):483–492CrossRefGoogle Scholar
  27. 27.
    Chang CH, Horton J, Schoenfeld D, Salazer O, Perez-Tamayo R, Kramer S, Weinstein A, Nelson JS, Tsukada Y (1983) Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas. Cancer 52:997–1007CrossRefGoogle Scholar
  28. 28.
    Chaplain MAJ (1996) Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumour development. Math Comput Model 23(6):47–87MATHCrossRefGoogle Scholar
  29. 29.
    Cheng G, Tse J, Jain RK, Munn LL (2009) Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PloS One 4(2):e4632CrossRefGoogle Scholar
  30. 30.
    Chevalier MW, El-Samad H (2014) A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions. J Chem Phys 141:214108CrossRefGoogle Scholar
  31. 31.
    Chib S, Greenberg E (1995) Understanding the Metropolis–Hastings algorithm. Am Stat 49(4):327–335Google Scholar
  32. 32.
    Christensen GE, Rabbitt RD, Miller MI (1996) Deformable templates using large deformation kinematics. IEEE Trans Image Process 5(10):1435–1447CrossRefGoogle Scholar
  33. 33.
    Cimmelli V, Sellitto A, Triani V (2010) A generalized Coleman–Noll procedure for the exploitation of the entropy principle. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, vol 466. The Royal Society, London, p 911–925Google Scholar
  34. 34.
    Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Ration Mech Anal 13(1):167–178MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Cox RT (1946) Probability, frequency and reasonable expectation. Am J Phys 14(1):1–13MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Criminisi A, Shotton J (2013) Decision forests for computer vision and medical image analysis. Springer, BerlinCrossRefGoogle Scholar
  37. 37.
    Cristini V, Li X, Lowengrub JS, Wise SM (2009) Nonlinear simulation of solid tumor growth using a mixture model: invasion and branching. J Math Biol 58:723–763MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Cristini V, Lowengrub J (2010) Multiscale modeling of cancer: an integrated experimental and mathematical modeling approach. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  39. 39.
    Cukier RI, Fortuin CM, Shuler KE, Petschek AG, Schaibly JH (1973) Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I. Theory. J Chem Phys 59(8):3873–3878CrossRefGoogle Scholar
  40. 40.
    Curtin WA, Miller RE (2003) Atomistic/continuum coupling in computational materials science. Model Simul Mater Sci Eng 11(3):R33CrossRefGoogle Scholar
  41. 41.
    D’Antonio G, Macklin P, Preziosi L (2013) An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix. Math Biosc Eng 10(1):75–101MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Deakin NE, Chaplain MAJ (2013) Mathematical modeling of cancer invasion: the role of membrane-bound matrix metalloproteinases. In: Rejniak KA, Enderling H (eds) Computational models in oncology: from tumor initiation to progression to treatment. Frontiers Media SA, SwitzerlandGoogle Scholar
  43. 43.
    Deisboeck TS, Stamatakos GS (2010) Multiscale cancer modeling. In: Britton NF, Lin X, Safer HM, Scheneider MV, Singh M, Tramontano A (eds) Chapman & Hall/CRC mathematical and computational biology series. Taylor & Francis Group, LondonGoogle Scholar
  44. 44.
    Demicheli R, Foroni R, Ingrosso A, Pratesi G, Soranzo C, Tortoreto M (1989) An exponential-Gompertzian description of lovo cell tumor growth from in vivo and in vitro data. Cancer Res 49:6543–6546Google Scholar
  45. 45.
    Dupuis P, Grenander U, Miller MI (1998) Variational problems on flows of diffeomorphisms for image matching. Q Appl Math 56(3):587MathSciNetMATHGoogle Scholar
  46. 46.
    Elliot CM (1989) The Cahn–Hilliard model for the kinetics of phase separation. In: Rodrigues JF (ed) Mathematical models for phase change problems. Birkhauser, SwitzerlandGoogle Scholar
  47. 47.
    Elliott CM, Songmu Z (1986) On the Cahn–Hilliard. Arch Ration Mech Anal 96(4):339–357MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Eyre DJ (1998) Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Bullard JW, Chen LQ (eds) Computational and mathematical models of microstructural evolution, MRS proceedings, vol 529. Cambridge University Press, Cambridge, pp 39–46Google Scholar
  49. 49.
    Feng Y, Boukhris SJ, Ranjan R, Valencia RA (2015) Biological systems: multiscale modeling based on mixture-theory. In: De S, Hwang W, Kuhl E (eds) Multiscale modeling in biomechanics and mechanobiology. Springer, BerlinGoogle Scholar
  50. 50.
    Fife PC (2000) Models for phase separation and their mathematics. Electron J Differ Equ 48:1–26MathSciNetMATHGoogle Scholar
  51. 51.
    Frieboes HB, Jin F, Chuang YL, Wise S, Lowengrub J, Cristini V (2011) Three-dimensional multispecies nonlinear tumor growth—II: tumor invasion and angiogenesis. J Theor Biol 264(4):1254–1278MathSciNetCrossRefGoogle Scholar
  52. 52.
    Frieboes HB, Lowengrubb JS, Wise S, Zheng X, Macklin P, Bearer E, Cristini V (2007) Computer simulation of glioma growth and morphology. Neuroimage 37(Suppl. 1):S59–S70CrossRefGoogle Scholar
  53. 53.
    Ganapathy-Kanniappan S, Geschwind JFH (2013) Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer 12:152CrossRefGoogle Scholar
  54. 54.
    Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spectral approach, revised edn. Dover, New YorkGoogle Scholar
  55. 55.
    Gonalves E, Bucher J, Ryll A, Niklas J, Mauch K, Klamt S, Rochad M, Saez-Rodriguez J (2013) Bridging the layers: towards integration of signal transduction, regulation and metabolism into mathematical models. Mol Biosyst 9:1576CrossRefGoogle Scholar
  56. 56.
    Hanahan D, Weinberg R (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefGoogle Scholar
  57. 57.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70CrossRefGoogle Scholar
  58. 58.
    Hawkins-Daarud A, van der Zee KG, Tinsley Oden J (2012) Numerical simulation of a thermodynamically consistent four-species tumor growth model. Int J Numer Methods in Biomed Eng 28(1):3–24MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Hawkins-Daarud AJ (2011) Toward a predictive model of tumor growth. Ph.D. thesis, The University of Texas at AustinGoogle Scholar
  60. 60.
    Heida M, Málek J, Rajagopal KR (2012) On the development and generalizations of Cahn–Hilliard equations within a thermodynamic framework. Z Angew Math Phys 63:145–169MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Hesketh R (2013) Introduction to cancer biology, 1st edn. Cambridge University Press, CambridgeGoogle Scholar
  62. 62.
    Hyun AA, Macklin P (2013) Improved patient-specific calibration for agent-based cancer modeling. J Theor Biol 317:422–424MathSciNetCrossRefGoogle Scholar
  63. 63.
    Jackson TL (ed) (2012) Modeling tumor vasculature—molecular, cellular, and tissue level aspects and implications. Springer, BerlinGoogle Scholar
  64. 64.
    Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol 31(17):2205–2218CrossRefGoogle Scholar
  65. 65.
    Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  66. 66.
    Szekely T Jr, Burrage K (2014) Stochastic simulation in systems biology. Comput Struct Biotechnol J 12(2021):14–25CrossRefGoogle Scholar
  67. 67.
    Kaipio J, Somersalo E (2005) Statistical and computational inverse problems. Springer, BerlinMATHGoogle Scholar
  68. 68.
    Kansal A, Torquato S, Harsh GR IV, Chiocca E, Deisboeck T (2000) Cellular automaton of idealized brain tumor growth dynamics. Biosystems 55(13):119–127CrossRefGoogle Scholar
  69. 69.
    Kansal AR, Torquato S, Harsh GR IV, Chiocca EA, Deisboeck TS (2000) Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. J Theor Biol 203(4):367–382CrossRefGoogle Scholar
  70. 70.
    Kholodenko BN, Hancock JF, Kolch W (2006) Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8(11):1195CrossRefGoogle Scholar
  71. 71.
    Kihara T, Ito J, Miyake J (2013) Measurement of biomolecular diffusion in extracellular matrix condensed by fibroblasts using fluorescence correlation spectroscopy. PloS One 8(11):e82,382CrossRefGoogle Scholar
  72. 72.
    Kirk BS, Peterson JW, Stogner RH, Carey GF (2006) libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng Comput 22(3–4):237–254CrossRefGoogle Scholar
  73. 73.
    Knowles MA, Selby PJ (2005) Introduction to the cellular and molecular biology of cancer, 4th edn. Oxford University Press, OxfordGoogle Scholar
  74. 74.
    Le Maître OP, Knio OM (2010) Spectral methods for uncertainty quantification. Springer, BerlinMATHCrossRefGoogle Scholar
  75. 75.
    Lima EABF, Almeida RC (2011) A comparative study of some fem mixed formulations for the 1D Cahn–Hilliard equation. In: CILAMCE XXXIIGoogle Scholar
  76. 76.
    Lima EABF, Almeida RC, Oden JT (2015) Analysis and numerical solution of stochastic phase-field models of tumor growth. Numer Methods Part Differ Equ 31(2):552–574MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    Lima EABF, Oden JT, Almeida RC (2014) A hybrid ten-species phase-field model of tumor growth. Math Models Methods Appl Sci 24(13):2569–2599MathSciNetMATHCrossRefGoogle Scholar
  78. 78.
    Liotta LA, Saidel GM, Kleinerman J (1976) Stochastic model of mestastases formation. Biometrics 32:535–550MathSciNetMATHCrossRefGoogle Scholar
  79. 79.
    Liu F, Bayarri MJ, Berger JO, Paulo R, Sacks J (2008) A Bayesian analysis of the thermal challenge problem. Comput Methods Appl Mech Eng 197:2457–2466MATHCrossRefGoogle Scholar
  80. 80.
    Liu WK, Karpov EG, Park HS (2006) Nano mechanics and materials: theory, multiscale methods and applications. Wiley, New YorkCrossRefGoogle Scholar
  81. 81.
    Lo CF (2007) Stochastic Gompertz model of tumour cell growth. J Theor Biol 248:317–321MathSciNetCrossRefGoogle Scholar
  82. 82.
    Lowengrub JS, Frieboes HB, Jin F, Chuang Y, Li X, Macklin P, Wise S, Cristini V (2010) Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1):R1MathSciNetMATHCrossRefGoogle Scholar
  83. 83.
    Macklin P, Edgerton ME, Thompson AM, Cristini V (2012) Patient-calibrated agent-based modelling of ductal carcinoma in situ (DCIS): from microscopic measurements to macroscopic predictions of clinical progression. J Theor Biol 301:122–140MathSciNetCrossRefGoogle Scholar
  84. 84.
    Macklin P, Mumenthaler S, Lowengrub J (2013) Modeling multiscale necrotic and calcified tissue biomechanics in cancer patients: application to ductal carcinoma in situ (DCIS). In: Gefen A (ed) Multiscale computer modeling in biomechanics and biomedical engineering, chap 13. Springer, BerlinGoogle Scholar
  85. 85.
    Mallet DG, De Pillis LG (2006) A cellular automata model of tumor–immune system interactions. J Theor Biol 239:334–350MathSciNetCrossRefGoogle Scholar
  86. 86.
    Mantzaris N, Webb S, Othmer HG (2004) Mathematical modeling of tumor-induced angiogenesis. J Math Biol 49:111–187MathSciNetMATHCrossRefGoogle Scholar
  87. 87.
    Martin EA (ed) (2010) A dictionary of science, 6th edn. Oxford University Press, OxfordGoogle Scholar
  88. 88.
    Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K et al (2014) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 1–32Google Scholar
  89. 89.
    Milde F, Bergdorf M, Koumoutsakos P (2008) A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophys J 95:3146–3160CrossRefGoogle Scholar
  90. 90.
    Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press, CambridgeMATHGoogle Scholar
  91. 91.
    Najafi A, Bidkhori G, Bozorgmehr JH, Koch I, Masoudi-Nejad A (2014) Genome scale modeling in systems biology: algorithms and resources. Curr Genomics 15:130–159CrossRefGoogle Scholar
  92. 92.
    National Cancer Institute (2012) Dictionary of cancer terms.
  93. 93.
    Naumov L, Hoekstra A, Sloot P (2011) Cellular automata models of tumour natural shrinkage. Phys A Stat Mech Appl 390(12):2283–2290CrossRefGoogle Scholar
  94. 94.
    Naumov L, Hoekstra A, Sloot P (2012) The influence of mitoses rate on growth dynamics of a cellular automata model of tumour growth. Proc Comput Sci 1:971–978CrossRefGoogle Scholar
  95. 95.
    Niemisto A, Dunmire V, Yli-Harja O, Zhang W, Shmulevich I (2005) Analysis of angiogenesis using in vitro experiments and stochastic growth models. Phys Rev E 72: 062902-1–062902-4Google Scholar
  96. 96.
    Norton K, Wininger M, Bhanot G, Ganesan S, Barnard N, Shinbrot T (2010) A 2D mechanistic model of breast ductal carcinoma in situ (DCIS) morphology and progression. J Theor Biol 263(4):393–406CrossRefGoogle Scholar
  97. 97.
    Oden J, Strouboulis T, Devloo P (1986) Adaptive finite element methods for the analysis of inviscid compressible flow: part I. Fast refinement/unrefinement and moving mesh methods for unstructured meshes. Comput Methods Appl Mech Eng 59(3):327–362MathSciNetMATHCrossRefGoogle Scholar
  98. 98.
    Oden JT, Hawkins A, Prudhomme S (2010) General diffuse-interface theories and an approach to predictive tumor growth modeling. Math Models Methods Appl Sci 20(3):477–517MathSciNetMATHCrossRefGoogle Scholar
  99. 99.
    Oden JT, Prudencio EE, Hawkins-Daarud A (2013) Selection and assessment of phenomenological models of tumor growth. Math Models Methods Appl Sci 23(07):1309–1338MathSciNetMATHCrossRefGoogle Scholar
  100. 100.
    Piotrowska MJ, Angus SD (2009) A quantitative cellular automaton model of in vitro multicellular spheroid tumour growth. J Theor Biol 258(2):165–178CrossRefGoogle Scholar
  101. 101.
    Preziosi L (2003) Cancer modelling and simulation, 1st edn. CRC Press, Boca RatonMATHCrossRefGoogle Scholar
  102. 102.
    Prudencio E, Cheung SH (2012) Parallel adaptive multilevel sampling algorithms for the bayesian analysis of mathematical models. Int J Uncertain Quantif 2(3):215–237MathSciNetMATHCrossRefGoogle Scholar
  103. 103.
    Prudencio EE, Bauman PT, Faghihi D, Ravi-Chandar K, Oden JT (2014) A computational framework for dynamic data-driven material damage control, based on bayesian inference and model selection. Int J Numer Methods Eng 102:379–403Google Scholar
  104. 104.
    Prudencio EE, Cheung SH, Oliver T, Schulz K (2010) The parallel C++ statistical library ‘QUESO’: quantification of uncertainty for estimation, simulation and optimization (in preparation). Springer, New YorkGoogle Scholar
  105. 105.
    Pyrz M, Baish J (2013) Effect of tumor heterogeneity on interstitial pressure and fluid flow. In: ASME 2013 summer bioengineering conference. American Society of Mechanical Engineers, Sunriver, Oregon, p V01AT07A004Google Scholar
  106. 106.
    Quaranta V, Weaver AM, Cummings PT, Anderson ARA (2005) Mathematical modeling of cancer: the future of prognosis and treatment. Clin Chim Acta 357:173–179CrossRefGoogle Scholar
  107. 107.
    Ramis-Conde I, Chaplain MA, Anderson A (2008) Mathematical modelling of cancer cell invasion of tissue. Math Comput Model 47(56):533–545 (Towards a mathematical description of cancer: analytical, numerical and modelling aspects)MathSciNetMATHCrossRefGoogle Scholar
  108. 108.
    Ricken T, Schwarz A, Bluhm J (2007) A triphasic model of transversely isotropic biological tissue with applications to stress and biologically induced growth. Compu Mater Sci 39(1):124–136CrossRefGoogle Scholar
  109. 109.
    Rocha HL, Lima EABF, Almeida RC (2015) An agent based model of the avascular tumor growth. Congresso Latino Americano de Biomatemática—SOLABIMA (in Portuguese) Google Scholar
  110. 110.
    Roniotis A, Marias K, Sakkalis V, Tsibidis GD, Zervakis M (2009) A complete mathematical study of a 3D model of heterogeneous and anisotropic glioma evolution. In: Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2009). IEEE, pp 2807–2810Google Scholar
  111. 111.
    Roose T, Netti PA, Munn LL, Boucher Y, Jain RK (2003) Solid stress generated by spheroid growth estimated using a linear poroelasticity model. Microvasc Res 66(3):204–212CrossRefGoogle Scholar
  112. 112.
    Rudd RE, Broughton JQ (1998) Coarse-grained molecular dynamics and the atomic limit of finite elements. Phys Rev B 58(10):R5893–R5896CrossRefGoogle Scholar
  113. 113.
    Rybinski M (2008) Analysis of mathematical models of signalling pathways. Master thesis, Uniwersytet WarszawskiGoogle Scholar
  114. 114.
    Saltelli A, Chan K, Scott E (2009) Sensitivity analysis no. 2008 in Wiley paperback series. WileyGoogle Scholar
  115. 115.
    Schnell S, Grima R, Maini P (2007) Multiscale modeling in biology new insights into cancer illustrate how mathematical tools are enhancing the understanding of life from the smallest scale to the grandest. Am Sci 95(2):134–142CrossRefGoogle Scholar
  116. 116.
    Seyfried TN, Flores R, Poff AM, DAgostino DP, Mukherjee P (2015) Metabolic therapy: a new paradigm for managing malignant brain cancer. Cancer Lett 356(2, Part A):289–300CrossRefGoogle Scholar
  117. 117.
    Shilkrot L, Miller R, Curtin W (2002) Coupled atomistic and discrete dislocation plasticity. Phys Rev Lett 89(2):025,501CrossRefGoogle Scholar
  118. 118.
    Shilkrot L, Miller RE, Curtin WA (2004) Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics. J Mech Phys Solids 52(4):755–787MathSciNetMATHCrossRefGoogle Scholar
  119. 119.
    Shirazi AS (2011) Hierarchical self-organized learning in agent-based modeling of the MAPK signaling pathway. In: IEEE congress on evolutionary computation (CEC). IEEE, New Orleans, pp 2245–2251Google Scholar
  120. 120.
    Shrestha SMB, Joldes G, Wittek A, Miller K (2014) Modeling three-dimensional avascular tumor growth using lattice gas cellular automata. In: Computational biomechanics for medicine. Springer, Berlin, pp 15–26Google Scholar
  121. 121.
    Sobol’ IM (1990) Sensitivity estimates for nonlinear mathematical models. Matem Model 2:112–118MathSciNetMATHGoogle Scholar
  122. 122.
    Sobol’ IM (1993) Sensitivity analysis for non-linear mathematical models. Math Model Comput Exp 1:407–414MathSciNetMATHGoogle Scholar
  123. 123.
    Stokes CL, Lauffenburger DA (1991) Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J Theor Biol 152:377–403CrossRefGoogle Scholar
  124. 124.
    Stylianopoulos T, Martin JD, Chauhan VP, Jain SR, Diop-Frimpong B, Bardeesy N, Smith BL, Ferrone CR, Hornicek FJ, Boucher Y et al (2012) Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc Natl Acad Sci 109(38):15101–15108CrossRefGoogle Scholar
  125. 125.
    Stylianopoulos T, Martin JD, Snuderl M, Mpekris F, Jain SR, Jain RK (2013) Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res 73(13):3833–3841CrossRefGoogle Scholar
  126. 126.
    Sun S, Wheeler MF, Obeyesekere M, Patrick CW Jr (2005) A deterministic model of growth factor-induced angiogenesis. Bull Math Biol 67:313–337MathSciNetMATHCrossRefGoogle Scholar
  127. 127.
    Sun S, Wheeler MF, Obeyesekere M, Patrick CW Jr (2005) Nonlinear behaviors of cappilary formation in a deterministic angiogenesis model. Nonlinear Anal 63:e2237–e2246MATHCrossRefGoogle Scholar
  128. 128.
    Sunyk R, Steinmann P (2003) On higher gradients in continuum-atomistic modelling. Int J Solids Struct 40(24):6877–6896MATHCrossRefGoogle Scholar
  129. 129.
    Swartz MA, Lund AW (2012) Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer 12(3):210–219CrossRefGoogle Scholar
  130. 130.
    Szot CS, Buchanan CF, Freeman JW, Rylander MN (2011) Collagen 1 hydrogels as a platform for in vitro solid tumor development. Biomaterials 32(32):7905–7912CrossRefGoogle Scholar
  131. 131.
    Szot CS, Buchanan CF, Freeman JW, Rylander MN (2013) In vitro angiogenesis induced by tumor-endothelial cell co-culture in bilayered, collagen I hydrogel bioengineered tumors. Tissue Eng Part C 19(11):864–874CrossRefGoogle Scholar
  132. 132.
    TACC (Texas Advanced Computing Center) (2008–2015).
  133. 133.
    Tadmor EB, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag A 73(6):1529–1563CrossRefGoogle Scholar
  134. 134.
    Tan SM, Fox C, Nicholls G (2005) Lecture notes on inverse problems. Physics 707:1–184Google Scholar
  135. 135.
    Tan WY, Chen CW (1998) Stochastic modeling of carcinogenesis: some new insights. Math Comput Model 28:49–71MathSciNetMATHCrossRefGoogle Scholar
  136. 136.
    Tang L, van de Ven AL, Guo D, Andasari V, Cristini V, Li KC, Zhou X (2014) Computational modeling of 3D tumor growth and angiogenesis for chemotherapy evaluation. PloS One 9(1):e83,962CrossRefGoogle Scholar
  137. 137.
    Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAMGoogle Scholar
  138. 138.
    Thomas R (1973) Boolean formalization of genetic control circuits. J Theor Biol 42:563–585CrossRefGoogle Scholar
  139. 139.
    Tierra G, Guillén-González F (2015) Numerical methods for solving the Cahn–Hlliard equation and its applicability to related energy-based models. Arch Comput Methods Eng 22(2):269–289MathSciNetCrossRefGoogle Scholar
  140. 140.
    Travasso RDM, Poire EC, Castro M, Rodriguez-Manzaneque JC, Hernandez-Machado A (2011) Tumor angiogenesis and vascular patterning: a mathematical model. PLoS One 6(5):1–10Google Scholar
  141. 141.
    Tustison N, Wintermark M, Durst C, Avants B (2013) Ants andarboles. Multimodal Brain Tumor Segm 47:47–50Google Scholar
  142. 142.
    Voutouri C, Mpekris F, Papageorgis P, Odysseos AD, Stylianopoulos T (2014) Role of constitutive behavior and tumor–host mechanical interactions in the state of stress and growth of solid tumors. PloS One 9(8):e104717CrossRefGoogle Scholar
  143. 143.
    Van der Giessen E, Needleman A (1995) Discrete dislocation plasticity: a simple planar model. Model Simul Mater Sci Eng 3(5):689CrossRefGoogle Scholar
  144. 144.
    Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407CrossRefGoogle Scholar
  145. 145.
    Wang R, Saadatpour A, Albert R (2012) Boolean modeling in systems biology: an overview of methodology and applications. Phys Biol 9:055001CrossRefGoogle Scholar
  146. 146.
    Wang Z, Birc CM, Zhang L, Sagotsky J, Deisboeck TS (2009) Cross-scale, cross-pathway evaluation using an agent-based non-small cell lung cancer model. Bioinformatics 25(18):23892396CrossRefGoogle Scholar
  147. 147.
    Wang Z, Birch CM, Deisboeck TS (2008) Cross-scale sensitivity analysis of a non-small cell lung cancer model: linking molecular signaling properties to cellular behavior. Biosystems 92(3):249–258CrossRefGoogle Scholar
  148. 148.
    Wang Z, Zhang L, Sagotsky J, Deisboeck TS (2007) Simulating non-small cell lung cancer with a multiscale agent-based model. Theor Biol Med Model 4:50CrossRefGoogle Scholar
  149. 149.
    Winkler R (2003) An introduction to bayesian inference and decision. Probabilistic Publishing, Sugar Land, TexasGoogle Scholar
  150. 150.
    Wirtz D, Konstantopoulos K, Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11(7):512–522CrossRefGoogle Scholar
  151. 151.
    Wise SM, Lowengrub JS, Cristini V (2011) An adaptive multigrid algorithm for simulating solid tumor growth using mixture models. Math Comput Model 53:1–20MathSciNetMATHCrossRefGoogle Scholar
  152. 152.
    Wise SM, Lowengrub JS, Frieboes H, Cristini V (2008) Three-dimensional multispecies nonlinear tumor growth—I: model and numerical method. J Theor Biol 253:524–543MathSciNetCrossRefGoogle Scholar
  153. 153.
    Wu M, Frieboes HB, McDougall SR, Chaplain MA, Cristini V, Lowengrub J (2013) The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems. J Theor Biol 320:131–151MathSciNetCrossRefGoogle Scholar
  154. 154.
    Xiao S, Belytschko T (2004) A bridging domain method for coupling continua with molecular dynamics. Comput Methods Appl Mech Eng 193(17):1645–1669MathSciNetMATHCrossRefGoogle Scholar
  155. 155.
    Xiu D (2010) Numerical methods for stochastic computations: a spectral method approach. Princeton University Press, PrincetonMATHGoogle Scholar
  156. 156.
    Zhang S, Khare R, Lu Q, Belytschko T (2007) A bridging domain and strain computation method for coupled atomistic–continuum modelling of solids. Int J Numer Methods Eng 70(8):913–933MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2015

Authors and Affiliations

  • J. Tinsley Oden
    • 1
  • Ernesto A. B. F. Lima
    • 1
  • Regina C. Almeida
    • 1
    • 2
  • Yusheng Feng
    • 4
  • Marissa Nichole Rylander
    • 1
    • 3
    • 7
  • David Fuentes
    • 5
  • Danial Faghihi
    • 1
  • Mohammad M. Rahman
    • 4
  • Matthew DeWitt
    • 6
  • Manasa Gadde
    • 7
  • J. Cliff Zhou
    • 1
  1. 1.Institute for Computational Engineering and Sciences (ICES)The University of Texas at AustinAustinUSA
  2. 2.National Laboratory for Scientific Computing (LNCC)PetrópolisBrazil
  3. 3.Department of Mechanical EngineeringThe University of Texas at AustinAustinUSA
  4. 4.Center for Simulation, Visualization and Real-Time Prediction (SiViRT), One UTSA Circle, AET 2.332The University of Texas at San AntonioSan AntonioUSA
  5. 5.Department of Imaging PhysicsThe University of Texas MD Anderson Cancer CenterHoustonUSA
  6. 6.Virginia Tech - Wake Forest School of Biomedical Engineering and SciencesVirginia TechBlacksburgUSA
  7. 7.Department of Biomedical EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations