Archives of Computational Methods in Engineering

, Volume 22, Issue 4, pp 621–636 | Cite as

Analysis of an Unconditionally Convergent Stabilized Finite Element Formulation for Incompressible Magnetohydrodynamics

Original Paper

Abstract

In this work, we analyze a recently proposed stabilized finite element formulation for the approximation of the resistive magnetohydrodynamics equations. The novelty of this formulation with respect to existing ones is the fact that it always converges to the physical solution, even when it is singular. We have performed a detailed stability and convergence analysis of the formulation in a simplified setting. From the convergence analysis, we infer that a particular type of meshes with a macro-element structure is needed, which can be easily obtained after a straight modification of any original mesh.

Keywords

Magnetohydrodynamics Finite elements Singular solutions Stabilized finite element methods 

References

  1. 1.
    Amrouche C, Bernardi C, Dauge M, Girault V (1998) Vector potentials in three-dimensional non-smooth domains. Math Methods Appl Sci 21(9):823–864MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Armero F, Simo JC (1996) Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations. Comput Methods Appl Mech Eng 131(1–2):41–90MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Aydın SH, Nesliturk AI, Tezer-Sezgin M (2010) Two-level finite element method with a stabilizing subgrid for the incompressible MHD equations. Int J Numer Methods Fluids 62(2):188–210MATHGoogle Scholar
  4. 4.
    Badia S, Codina R (2009) Unified stabilized finite element formulations for the Stokes and the Darcy problems. SIAM J Numer Anal 47(3):1977–2000MathSciNetCrossRefGoogle Scholar
  5. 5.
    Badia S, Codina R (2011) A combined nodal continuous–discontinuous finite element formulation for the Maxwell problem. Appl Math Comput 218(8):4276–4294MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Badia S, Codina R (2012) A nodal-based finite element approximation of the Maxwell problem suitable for singular solutions. SIAM J Numer Anal 50(2):398–417MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Badia S, Codina R, Planas R (2013) On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics. J Comput Phys 234:399–416MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Badia S, Planas R, Gutiérrez-Santacreu JV (2013) Unconditionally stable operator splitting algorithms for the incompressible magnetohy drodynamics system discretized by a stabilized finite element formulation based on projections. Int J Numer Methods Eng 93(3):302–328CrossRefGoogle Scholar
  9. 9.
    Belenli MA, Kaya S, Rebhols LG, Wilson NE (2013) A subgrid stabilization finite element method for incompressible magnetohydrodynamics. Int J Comput Math 90(7):1506–1523Google Scholar
  10. 10.
    Ben Salah N, Soulaimani A, Habashi WG (2001) A finite element method for magnetohydrodynamics. Comput Methods Appl Mech Eng 190(43–44):5867–5892MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Ben Salah N, Soulaimani A, Habashi WG, Fortin M (1999) A conservative stabilized finite element method for the magneto-hydrodynamic equations. Int J Numer Methods Fluids 29(5):535–554MATHCrossRefGoogle Scholar
  12. 12.
    Boffi D (2010) Finite element approximation of eigenvalue problems. Acta Numer 19:1–120MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Bonito A, Guermond J (2011) Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange finite elements. Math Comput 80:1887–1910MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Boulton L, Strauss M (2012) Eigenvalue enclosures and convergence for the linearized MHD operator. BIT Numer Math 52(4):801–825MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Bramble JH, Kolev TV, Pasciak JE (2005) The approximation of the Maxwell eigenvalue problem using a least-squares method. Math Comput 74(252):1575–1598MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Bramble JH, Pasciak JE (2004) A new approximation technique for div-curl systems. Math Comput 73(248):1739–1762MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Brenner SC, Scott LR (1994) The mathematical theory of finite element methods. Springer, BerlinMATHCrossRefGoogle Scholar
  18. 18.
    Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, BerlinMATHCrossRefGoogle Scholar
  19. 19.
    Buffa A, Ciarlet P Jr, Jamelot E (2009) Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements. Numer Math 113(4):497–518MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Codina R (2008) Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales. Appl Numer Math 58:264–283MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Codina R, Hernández N (2006) Stabilized finite element approximation of the stationary MHD equations. Comput Mech 38:344–355MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Codina R, Hernández N (2011) Approximation of the thermally coupled MHD problem using a stabilized finite element method. J Comput Phys 230(4):1281–1303MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Codina R, Principe J, Guasch O, Badia S (2007) Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Comput Methods Appl Mech Eng 196(21–24):2413–2430MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Costabel M (1991) A coercive bilinear form for Maxwell’s equations. J Math Anal Appl 157(2):527–541MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Costabel M, Dauge M (2002) Weighted regularization of Maxwell equations in polyhedral domains. Numer Math 93(2):239–277MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Cyr EC, Shadid JN, Tuminaro RS, Pawlowski RP, Chacón L (2013) A new approximate block factorization preconditioner for two-dimensional incompressible (reduced) resistive MHD. SIAM J Sci Comput 35(3):B701–B730MATHCrossRefGoogle Scholar
  27. 27.
    Davidson PA (2001) An introduction to magnetohydrodynamics. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  28. 28.
    Duan H-Y, Jia F, Lin P, Tan RCE (2009) The local \(L^2\) projected \(C^0\) finite element method for Maxwell problem. SIAM J Numer Anal 47(2):1274–1303MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Ern A, Guermond JL (2004) Theory and practice of finite elements. Springer, New YorkMATHCrossRefGoogle Scholar
  30. 30.
    Gerbeau J-F (2000) A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer Math 87:83–111MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Gerbeau JF, Le Bris C, Lelièvre T (2006) Mathematical methods for the magnetohydrodynamics of liquid metals. Oxford University Press, OxfordMATHCrossRefGoogle Scholar
  32. 32.
    Greif C, Li D, Schotzau D, Wei X (2010) A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Comput Methods Appl Mech Eng 199(45–48):2840–2855MATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Gunzburger MD, Meir AJ, Peterson JP (1991) On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics. Math Comput 56:523–563MATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Hasler U, Schneebeli A, Schötzau D (2004) Mixed finite element approximation of incompressible MHD problems based on weighted regularization. Appl Numer Math 51:19–45MATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Hazard C, Lenoir M (1996) On the solution of time-harmonic scattering problems for Maxwell’s equations. SIAM J Math Anal 27(6):1597–1630Google Scholar
  36. 36.
    Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET, Salinger AG, Thornquist HK, Tuminaro RS, Willenbring JM, Williams A, Stanley KS (2005) An overview of the Trilinos project. ACM Trans Math Softw 31(3):397–423MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Heroux MA, Willenbring JM (2003) Trilinos users guide. Technical Report SAND2003-2952, Sandia National LaboratoriesGoogle Scholar
  38. 38.
    Houston P, Schötzau D, Wei X (2009) A mixed DG method for linearized incompressible magnetohydrodynamics. J Sci Comput 40:281–314MATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Hsieh P-W, Yang S-Y (2009) A bubble-stabilized least-squares finite element method for steady MHD duct flow problems at high hartmann numbers. J Comput Phys 228:8301–8320MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Monk P (2003) Finite element methods for Maxwell’s equations. Oxford University Press, OxfordMATHCrossRefGoogle Scholar
  41. 41.
    Powell MJD, Sabin MA (1977) Piecewise quadratic approximations on triangles. ACM Trans Math Softw 3(4):316–325MATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Schötzau D (2004) Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer Math 96:771–800MATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    Shadid JN, Pawlowski RP, Banks JW, Chacon L, Lin PT, Tuminaro RS (2010) Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods. J Comput Phys 229(20):7649–7671MATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Sorokina T, Worsey AJ (2008) A multivariate Powell–Sabin interpolant. Adv Comput Math 29(1):71–89MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2014

Authors and Affiliations

  1. 1.Centre Internacional de Metodes Numerics en Enginyeria (CIMNE)Universitat Politècnica de Catalunya (UPC)CastelldefelsSpain
  2. 2.Parc Mediterrani de la TecnologiaUPCCastelldefelsSpain
  3. 3.Universitat Politècnica de Catalunya (UPC)BarcelonaSpain

Personalised recommendations