Advertisement

The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models

  • Dominik SchillingerEmail author
  • Martin Ruess
Article

Abstract

The finite cell method is an embedded domain method, which combines the fictitious domain approach with higher-order finite elements, adaptive integration, and weak enforcement of unfitted essential boundary conditions. Its core idea is to use a simple unfitted structured mesh of higher-order basis functions for the approximation of the solution fields, while the geometry is captured by means of adaptive quadrature points. This eliminates the need for boundary conforming meshes that require time-consuming and error-prone mesh generation procedures, and opens the door for a seamless integration of very complex geometric models into finite element analysis. At the same time, the finite cell method achieves full accuracy, i.e. optimal rates of convergence, when the mesh is refined, and exponential rates of convergence, when the polynomial degree is increased. Due to the flexibility of the quadrature based geometry approximation, the finite cell method can operate with almost any geometric model, ranging from boundary representations in computer aided geometric design to voxel representations obtained from medical imaging technologies. In this review article, we first provide a concise introduction to the basics of the finite cell method. We then summarize recent developments of the technology, with particular emphasis on the research topics in which we have been actively involved. These include the finite cell method with B-spline and NURBS basis functions, the treatment of geometric nonlinearities for large deformation analysis, the weak enforcement of boundary and coupling conditions, and local refinement schemes. We illustrate the capabilities and advantages of the finite cell method with several challenging examples, e.g. the image-based analysis of foam-like structures, the patient-specific analysis of a human femur bone, the analysis of volumetric structures based on CAD boundary representations, and the isogeometric treatment of trimmed NURBS surfaces. We conclude our review by briefly discussing some key aspects for the efficient implementation of the finite cell method.

References

  1. 1.
    Abedian A, Parvizian J, Düster A, Khademyzadeh H, Rank E (2013) Performance of different integration schemes in facing discontinuities in the finite cell method. Int J Comput Methods 10(3):1–24Google Scholar
  2. 2.
    Abedian A, Parvizian J, Düster A, Rank E (2013) The finite cell method for the J\(_2\) flow theory of plasticity. Finite Elem Anal Des 69:37–47Google Scholar
  3. 3.
    Agoston MK (2005) Computer graphics and geometric modeling, vol 2. Springer, BerlinGoogle Scholar
  4. 4.
    Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393zbMATHMathSciNetGoogle Scholar
  5. 5.
    Annavarapu C, Hautefeuille M, Dolbow JE (2012) A robust Nitsche’s formulation for interface problems. Comput Methods Appl Mech Eng 225:44–54MathSciNetGoogle Scholar
  6. 6.
    Apostolatos A, Schmidt R, Wüchner R, Bletzinger K-U (2014) A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis. Int J Numer Methods Eng 97(7):473–504Google Scholar
  7. 7.
    McNeel & Associates (2013) Rhinoceros-accurate freeform modeling for Windows. http://www.rhino3d.com
  8. 8.
    Babuška I, Banerjee U, Osborn JE (2003) Meshless and generalized finite element methods: a survey of some major results. In: Griebel M, Schweitzer MA (eds) Meshfree methods for partial differential equations. Springer, Berlin, pp 1–20Google Scholar
  9. 9.
    Babuška I (1972) The finite element method with penalty. Math Comput 27(122):221–228Google Scholar
  10. 10.
    Baiges J, Codina R (2010) The fixed-mesh ALE approach applied to solid mechanics and fluid-structure interaction problems. Int J Numer Methods Eng 81:1529–1557zbMATHMathSciNetGoogle Scholar
  11. 11.
    Baiges J, Codina R, Henke F, Shahmiri S, Wall WA (2012) A symmetric method for weakly imposing Dirchlet boundary conditions in embedded finite element meshes. Int J Numer Methods Eng 90:636–658zbMATHMathSciNetGoogle Scholar
  12. 12.
    Banhart J (2001) Manufacture, characterization and application of cellular metals and metal foams. Prog Mater Sci 46:559–632Google Scholar
  13. 13.
    Bastian P, Engwer C (2009) An unfitted finite element method using discontinuous Galerkin. Int J Numer Methods Eng 79:1557–1576zbMATHMathSciNetGoogle Scholar
  14. 14.
    Bathe K-J (1996) Finite element procedures. Prentice-Hall, Englewood CliffsGoogle Scholar
  15. 15.
    Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199:229–263zbMATHMathSciNetGoogle Scholar
  16. 16.
    Bazilevs Y, Hsu MC, Scott MA (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41MathSciNetGoogle Scholar
  17. 17.
    Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36:12–26zbMATHMathSciNetGoogle Scholar
  18. 18.
    Bazilevs Y, Michler CM, Calo VM, Hughes TJR (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly-enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng 199:780–790zbMATHMathSciNetGoogle Scholar
  19. 19.
    Beirão da Veiga L, Buffa A, Cho D, Sangalli G (2012) Analysis-suitable T-splines are dual-compatible. Comput Methods Appl Mech Eng 249:42–51Google Scholar
  20. 20.
    Belytschko T, Liu WK, Moran B (2006) Nonlinear finite elements for continua and structures. Wiley, NewYorkGoogle Scholar
  21. 21.
    Belytschko T, Parimi C, Moës N, Sukumar N, Usui S (2003) Structured extended finite element methods for solids defined by implicit surfaces. Int J Numer Methods Eng 56(4):609–635zbMATHGoogle Scholar
  22. 22.
    Bindick S, Stiebler M, Krafczyk M (2011) Fast kd-tree-based hierarchical radiosity for radiative heat transport problems. Int J Numer Methods Eng 86(9):1082–1100zbMATHGoogle Scholar
  23. 23.
    Bishop J (2003) Rapid stress analysis of geometrically complex domains using implicit meshing. Comput Mech 30:460–478zbMATHGoogle Scholar
  24. 24.
    Bonet J, Wood R (2008) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, CambridgezbMATHGoogle Scholar
  25. 25.
    Borden MJ, Scott MA, Evans JA, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. Int J Numer Methods Eng 87:15–47zbMATHMathSciNetGoogle Scholar
  26. 26.
    Bornemann B, Cirak F (2013) A subdivision-based implementation of the hierarchical b-spline finite element method. Comput Methods Appl Mech Eng 253:584–598zbMATHMathSciNetGoogle Scholar
  27. 27.
    Bungartz H-J, Griebel M (2004) Sparse grids. Acta Numer 13(1):147–269MathSciNetGoogle Scholar
  28. 28.
    Bungartz H-J, Griebel M, Zenger C (2004) Introduction to computer graphics. Charles River Media Inc, PragueGoogle Scholar
  29. 29.
    Burman E, Hansbo P (2010) Fictitious domain finite element methods using cut elements: a stabilized lagrange multiplier method. Comput Methods Appl Mech Eng 62(4):2680–2686MathSciNetGoogle Scholar
  30. 30.
    Burman E, Hansbo P (2012) Fictitious domain finite element methods using cut elements: a stabilized Nitsche method. Appl Numer Math 62(4):328–341zbMATHMathSciNetGoogle Scholar
  31. 31.
    Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods: fundamentals in single domains. Springer, BerlinGoogle Scholar
  32. 32.
    Canuto C, Hussaini MY, Quarteroni A, Zang TA (2007) Spectral methods: evolution to complex geometries and applications to fluid dynamics. Springer, BerlinGoogle Scholar
  33. 33.
    Chapman B, Jost G, Van Der Pas R (2008) Using OpenMP: portable shared memory parallel programming. The MIT Press, CambridgeGoogle Scholar
  34. 34.
    Chilton L, Suri M (1997) On the selection of a locking-free hp element for elasticity problems. Int J Numer Methods Eng 40(11):2045–2062zbMATHMathSciNetGoogle Scholar
  35. 35.
    Cohen E, Martin T, Kirby RM, Lyche T, Riesenfeld RF (2010) Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis. Comput Methods Appl Mech Eng 199:334–356zbMATHMathSciNetGoogle Scholar
  36. 36.
    Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: towards integration of CAD and FEA. Wiley, New YorkGoogle Scholar
  37. 37.
    de Souza Neto EA, Perić D, Owen DRJ (2008) Computational methods for plasticity: theory and applications. Wiley, New YorkGoogle Scholar
  38. 38.
    Dede’ L, Borden MJ, Hughes TJR (2012) Isogeometric analysis for topology optimization with a phase field model. Arch Comput Methods Eng 19:427–465MathSciNetGoogle Scholar
  39. 39.
    Del Pino S, Pironneau O (2003) A fictitious domain based general PDE solver. In: Kuznetsov Y, Neittanmaki P, Pironneau O (eds) Numerical methods for scientific computing: variational problems and applications. CIMNE, BarcelonaGoogle Scholar
  40. 40.
    Demkowicz L, Kurtz J, Pardo D, Paszynski M, Rachowicz W, Zdunek A (2007) Computing with Hp-adaptive finite elements, vol 2: frontiers three-dimensional elliptic and Maxwell problems with applications. Chapman & Hall/CRC, London.Google Scholar
  41. 41.
    Demkowicz LF (2006) Computing with Hp-adaptive finite elements, vol 1: one and two dimensional elliptic and Maxwell problems. Chapman & Hall/CRC, London.Google Scholar
  42. 42.
    Dokken T, Lyche T, Pettersen KF (2013) Polynomial splines over locally refined box-partitions. Comput Aided Geom Des 30(21):331–356zbMATHMathSciNetGoogle Scholar
  43. 43.
    Dolbow J, Harari I (2009) An efficient finite element method for embedded interface problems. Int J Numer Methods Eng 78:229–252zbMATHMathSciNetGoogle Scholar
  44. 44.
    Dong S, Yosibash Z (2009) A parallel spectral element method for dynamic three-dimensional nonlinear elasticity problems. Comput Struct 87(1):59–72Google Scholar
  45. 45.
    Düster A (2001) High order finite elements for three-dimensional, thin-walled nonlinear continua. Dissertation, Technische Universität München.Google Scholar
  46. 46.
    Düster A, Bröker H, Rank E (2001) The \(p\)-version of the finite element method for three-dimensional curved thin walled structures. Int J Numer Methods Eng 52:673–703zbMATHGoogle Scholar
  47. 47.
    Düster A, Hartmann S, Rank E (2003) p-fem applied to finite isotropic hyperelastic bodies. Comput Methods Appl Mech Eng 192(47):5147–5166zbMATHGoogle Scholar
  48. 48.
    Düster A, Niggl A, Rank E (2007) Applying the hp-d version of the fem to locally enhance dimensionally reduced models. Comput Methods Appl Mech Eng 196(37):3524–3533zbMATHGoogle Scholar
  49. 49.
    Düster A, Parvizian J, Yang Z, Rank E (2010) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197:3768–3782Google Scholar
  50. 50.
    Elguedj T, Bazilevs Y, Calo VM, Hughes TJR (2008) \(\bar{B}\) and \(\bar{F}\) projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements. Comput Methods Appl Mech Eng 197:2732–2762zbMATHGoogle Scholar
  51. 51.
    Embar A, Dolbow J, Harari I (2010) Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements. Int J Numer Methods Eng 83:877–898zbMATHMathSciNetGoogle Scholar
  52. 52.
    Evans JA, Bazilevs Y, Babuška I, Hughes TJR (2009) n-widths, sup-infs, and optimality ratios for the \(k\)-version of the isogeometric finite element method. Comput Methods Appl Mech Eng 198(21–26):1726–1741zbMATHGoogle Scholar
  53. 53.
    Evans JA, Hughes TJR (2013) Isogeometric divergence-conforming B-splines for the steady Navier-Stokes equations. Math Models Methods Appl Sci 23:1421zbMATHMathSciNetGoogle Scholar
  54. 54.
    Farin G (2002) Curves and surfaces for computer aided geometric design. Morgan Kaufmann Publishers, Los AltosGoogle Scholar
  55. 55.
    Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193:1257–1275zbMATHGoogle Scholar
  56. 56.
    Flemisch B, Wohlmuth BI (2007) Stable lagrange multipliers for quadrilateral meshes of curved interfaces in 3d. Comput Methods Appl Mech Eng 196(8):1589–1602zbMATHMathSciNetGoogle Scholar
  57. 57.
    Franke D, Düster A, Nübel V, Rank E (2010) A comparison of the h-, p-, hp-, and rp-version of the FEM for the solution of the 2d Hertzian contact problem. Comput Mech 45(5):513–522zbMATHGoogle Scholar
  58. 58.
    Gerstenberger A, Wall WA (2008) Enhancement of fixed-grid methods towards complex fluid-structure interaction applications. Int J Numer Methods Fluids 57:1227–1248zbMATHMathSciNetGoogle Scholar
  59. 59.
    Gerstenberger A, Wall WA (2010) An embedded Dirichlet formulation for 3D continua. Int J Numer Methods Eng 82:537–563zbMATHMathSciNetGoogle Scholar
  60. 60.
    Giannelli C, Jüttler B, Speleers H (2012) THB-splines: the truncated basis for hierarchical splines. Comput Aided Geom Des 29(7):485–498zbMATHGoogle Scholar
  61. 61.
    Glowinski R, Kuznetsov Y (2007) Distributed lagrange multipliers based on fictitious domain method for second order elliptic problems. Comput Methods Appl Mech Eng 196:1498– 1506Google Scholar
  62. 62.
    Griebel M, Schweitzer MA (2004) A particle-partition of unity method. Part V: boundary conditions. In: Hildebrandt S, Karcher H (eds) Geometric analysis and nonlinear partial differential equations. Springer, Berlin, pp 519–542Google Scholar
  63. 63.
    Grossmann D, Jüttler B, Schlusnus H, Barner J, Vuong AH (2012) Isogeometric simulation of turbine blades for aircraft engines. Comput Aided Geom Des 29(7):519–531zbMATHGoogle Scholar
  64. 64.
    Hansbo A, Hansbo P (2002) An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput Methods Appl Mech Eng 191:537–552Google Scholar
  65. 65.
    Hansbo P (2005) Nitsche’s method for interface problems in computational mechanics. GAMM Mitteilungen 28(2):183–206zbMATHMathSciNetGoogle Scholar
  66. 66.
    Harari I, Dolbow J (2010) Analysis of an efficient finite element method for embedded interface problems. Comput Mech 46:205–211zbMATHMathSciNetGoogle Scholar
  67. 67.
    Harari I, Shavelzon E (2012) Embedded kinematic boundary conditions for thin plate bending by Nitsche’s approach. Int J Numer Methods Eng 92(1):99–114MathSciNetGoogle Scholar
  68. 68.
    Haslinger J, Renard Y (2009) A new fictitious domain approach inspired by the extended finite element method. SIAM J Numer Anal 47:1474–1499zbMATHMathSciNetGoogle Scholar
  69. 69.
    Hautefeuille M, Annavarapu C, Dolbow JE (2012) Robust imposition of Dirichlet boundary conditions on embedded surfaces. Int J Numer Methods Eng 90:40–64zbMATHMathSciNetGoogle Scholar
  70. 70.
    Heisserer U, Hartmann S, Düster A, Yosibash Z (2008) On volumetric locking-free behaviour of p-version finite elements under finite deformations. Commun Numer Methods Eng 24(11):1019–1032zbMATHGoogle Scholar
  71. 71.
    Hesthaven JS, Gottlieb S, Gottlieb D (2007) Spectral methods for time-dependent problems. Cambridge University Press, CambridgezbMATHGoogle Scholar
  72. 72.
    Höllig K (2003) Finite element methods with B-Splines. Society for Industrial and Applied Mathematics, PhiladelphiazbMATHGoogle Scholar
  73. 73.
    Höllig K, Hörner J, Hoffacker A (2012) Finite element analysis with b-splines: weighted and isogeometric methods. Curves and surfaces, vol 6920, Lecture Notes in Computer ScienceSpringer, Berlin, pp 330–350.Google Scholar
  74. 74.
    Höllig K, Reif U, Wipper J (2001) Weighted extended b-spline approximation of Dirichlet problems. SIAM J Numer Anal 39:442–462zbMATHMathSciNetGoogle Scholar
  75. 75.
    Holzapfel GA (2000) Nonlinear solid mechanics. A continuum approach for engineering, Wiley, New YorkzbMATHGoogle Scholar
  76. 76.
    Hsu MC, Akkerman I, Bazilevs Y (2012) Wind turbine aerodynamics using ALE-VMS: validation and the role of weakly enforced boundary conditions. Comput Mech 50:499–511zbMATHMathSciNetGoogle Scholar
  77. 77.
    Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, New YorkGoogle Scholar
  78. 78.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195zbMATHMathSciNetGoogle Scholar
  79. 79.
    Hughes TJR, Evans JA, Reali A (2013) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. ICES REPORT 13–24, The Institute for Computational Engineering and Sciences, The University of Texas at Austin.Google Scholar
  80. 80.
    Ibrahimbegović A (2009) Nonlinear solid mechanics: theoretical formulations and finite element solution methods. Springer, BerlinGoogle Scholar
  81. 81.
    Johannessen KA, Kvamsdal T, Dokken T (2014) Isogeometric analysis using LR B-splines. Comput Methods Appl Mech Eng 269:471–514zbMATHMathSciNetGoogle Scholar
  82. 82.
    Joulaian M, Düster A (2013) Local enrichment of the finite cell method for problems with material interfaces. Comput Mech 52:741–762zbMATHGoogle Scholar
  83. 83.
    Juntunen J, Stenberg R (2009) Nitsche’s method for general boundary conditions. Math Comput 78:1353–1374zbMATHMathSciNetGoogle Scholar
  84. 84.
    Kagan P, Fischer A (2000) Integrated mechanically based CAE system using B-spline finite elements. Comput Aided Des 32(8–9):539–552zbMATHGoogle Scholar
  85. 85.
    Keyak JH, Falkinstein Y (2003) Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med Eng Phys 25(9):781–787Google Scholar
  86. 86.
    Kim H-J, Seo Y-D, Youn S-K (2009) Isogeometric analysis for trimmed CAD surfaces. Comput Methods Appl Mech Eng 198:2982–2995zbMATHGoogle Scholar
  87. 87.
    Kim H-J, Seo Y-D, Youn S-K (2010) Isogeometric analysis with trimming technique for problems of arbitrary complex topology. Comput Methods Appl Mech Eng 199:45–48Google Scholar
  88. 88.
    Kopriva DA (2009) Implementing spectral methods for partial differential equations. Springer, BerlinzbMATHGoogle Scholar
  89. 89.
    Krause R, Rank E (2003) Multiscale computations with a combination of the h-and p-versions of the finite element method. Comput Methods Appl Mech Eng 192(35):3959–3983zbMATHGoogle Scholar
  90. 90.
    Kreikemeier J (2012) Modelling of phase boundaries via the GAUSS-Point Method. Technische Mechanik 32(6):658–666Google Scholar
  91. 91.
    Krysl P, Grinspun E, Schröder P (2003) Natural hierarchical refinement for finite element methods. Int J Numer Methods Eng 56:1109–1124zbMATHGoogle Scholar
  92. 92.
    Kudela L (2013) Highly Accurate Subcell Integration in the Context of The Finite Cell Method. Master Thesis, Technische Universität München.Google Scholar
  93. 93.
    Legay A, Wang HW, Belytschko T (2005) Strong and weak arbitrary discontinuities in spectral finite elements. Int J Numer Methods Eng 64:991–1008zbMATHMathSciNetGoogle Scholar
  94. 94.
    Legrain G (2013) A NURBS enhanced extended finite element approach for unfitted CAD analysis. Comput Mech 1:34Google Scholar
  95. 95.
    Legrain G, Cartraud P, Perreard I, Moës N (2011) An X-FEM and level set computational approach for image-based modelling: application to homogenization. Int J Numer Methods Eng 86(7):915–934zbMATHGoogle Scholar
  96. 96.
    Legrain G, Chevaugeon N, Dréau K (2012) High order X-FEM and levelsets for complex microstructures: uncoupling geometry and approximation. Comput Methods Appl Mech Eng 241:172–189Google Scholar
  97. 97.
    Lew AJ, Buscaglia GC (2008) A discontinuous Galerkin-based immersed boundary method. Int J Numer Methods Eng 76:427–454zbMATHMathSciNetGoogle Scholar
  98. 98.
    Lew AJ, Negri M (2011) Optimal convergence of a discontinuous-galerkin-based immersed boundary method. ESAIM Math Model Numer Anal 45(04):651–674zbMATHMathSciNetGoogle Scholar
  99. 99.
    Li Z, Ito K (2006) The immersed interface method: numerical solutions of PDEs involving interfaces and irregular domains. Society for Industrial and Applied Mathematics, PhiladelphiaGoogle Scholar
  100. 100.
    Lipton S, Evans JA, Bazilevs Y, Elguedj T, Hughes TJR (2010) Robustness of isogeometric structural discretizations under severe mesh distortion. Comput Methods Appl Mech Eng 199(5):357–373zbMATHGoogle Scholar
  101. 101.
    Intact Solutions LLC (2009) Scan&solve\(^{TM}\): Fea without meshing (white paper). http://www.intact-solutions.com/Scan&Solve.pdf
  102. 102.
    Löhner R, Cebral RJ, Camelli FE, Appanaboyina S, Baum JD, Mestreau EL, Soto OA (2008) Adaptive embedded and immersed unstructured grid techniques. Comput Methods Appl Mech Eng 197:2173–2197zbMATHGoogle Scholar
  103. 103.
    Lui SH (2009) Spectral domain embedding for elliptic PDEs in complex domains. J Comput Appl Math 225(2):541–557zbMATHMathSciNetGoogle Scholar
  104. 104.
    Mergheim J, Steinmann P (2006) A geometrically nonlinear FE approach for the simulation of strong and weak discontinuities. Comput Methods Appl Mech Eng 195(37):5037–5052zbMATHMathSciNetGoogle Scholar
  105. 105.
    Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37:239–261MathSciNetGoogle Scholar
  106. 106.
    Moës N, Cloirec M, Cartraud P, Remacle J-F (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192:3163–3177zbMATHGoogle Scholar
  107. 107.
    Moumnassi M, Belouettar S, Béchet E, Bordas SPA, Quoirin D, Potier-Ferry M (2011) Finite element analysis on implicitly defined domains: an accurate representation based on arbitrary parametric surfaces. Comput Methods Appl Mech Eng 200(5):774–796zbMATHGoogle Scholar
  108. 108.
    Mousavi SE, Sukumar N (2010) Generalized gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method. Comput Methods Appl Mech Eng 199(49):3237–3249zbMATHMathSciNetGoogle Scholar
  109. 109.
    Mousavi SE, Sukumar N (2011) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput Mech 47(5):535–554zbMATHMathSciNetGoogle Scholar
  110. 110.
    Nagy A, Benson DJ (2014) On the numerical integration of trimmed isogeometric elements. Preprint.Google Scholar
  111. 111.
    Neittaanmäki P, Tiba D (1995) An embedding domains approach in free boundary problems and optimal design. SIAM J Control Optim 33(5):1587–1602zbMATHMathSciNetGoogle Scholar
  112. 112.
    Netz T, Düster A, Hartmann S (2013) High-order finite elements compared to low-order mixed element formulations. ZAMM J Appl Math Mech 93(2–3):163–176zbMATHGoogle Scholar
  113. 113.
    Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wüchner R, Bletzinger KU, Bazilevs Y, Rabczuk T (2011) Rotation free isogeometric thin shell analysis using PHT-splines. Comput Methods Appl Mech Eng 200(47):3410–3424zbMATHGoogle Scholar
  114. 114.
    Nguyen-Thanh N, Nguyen-Xuan H, Bordas SPA, Rabczuk T (2011) Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids. Comput Methods Appl Mech Eng 200(21):1892–1908zbMATHMathSciNetGoogle Scholar
  115. 115.
    Nitsche JA (1970) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36:9– 15MathSciNetGoogle Scholar
  116. 116.
    Noel AT, Szabó BA (1997) Formulation of geometrically non-linear problems in the spatial reference frame. Int J Numer Methods Eng 40(7):1263–1280zbMATHGoogle Scholar
  117. 117.
    Nübel V, Düster A, Rank E (2007) An rp-adaptive finite element method for the deformation theory of plasticity. Comput Mech 39(5):557–574zbMATHGoogle Scholar
  118. 118.
    Parussini L, Pediroda V (2009) Fictitious domain approach with hp-finite element approximation for incompressible fluid flow. J Comput Phys 228(10):3891–3910zbMATHMathSciNetGoogle Scholar
  119. 119.
    Parvizian J, Düster A, Rank E (2007) Finite cell method: h- and p- extension for embedded domain methods in solid mechanics. Comput Mech 41:122–133Google Scholar
  120. 120.
    Parvizian J, Düster A, Rank E (2012) Toplogy optimization using the finite cell method. Optim Eng 13:57–78zbMATHMathSciNetGoogle Scholar
  121. 121.
    Peskin C (2002) The immersed boundary method. Acta Numer 11:479–517zbMATHMathSciNetGoogle Scholar
  122. 122.
    Pham DL, Xu C, Prince JL (2000) A survey of current methods in medical image segmentation. Annu Rev Biomed Eng 2(1):315–337Google Scholar
  123. 123.
    Piegl L, Tiller W (1997) The NURBS book. Springer, BerlinGoogle Scholar
  124. 124.
    Ramière I, Angot P, Belliard M (2007) A general fictitious domain method with immersed jumps and multilevel nested structured meshes. J Comput Phys 225:1347–1387zbMATHMathSciNetGoogle Scholar
  125. 125.
    Ramière I, Angot P, Belliard M (2007) A fictitious domain approach with spread interface for elliptic problems with general boundary conditions. Comput Methods Appl Mech Eng 196:766–781zbMATHGoogle Scholar
  126. 126.
    Rangarajan R, Lew AJ, Buscaglia GC (2009) A discontinuous-galerkin-based immersed boundary method with non-homogeneous boundary conditions and its application to elasticity. Comput Methods Appl Mech Eng 198(17):1513–1534zbMATHMathSciNetGoogle Scholar
  127. 127.
    Ranjbar M, Mashayekhi M, Parvizian J, Düster A, Rank E (2014) Using the finite cell method to predict crack initiation in ductile materials. Comput Mater Sci 82:427–434Google Scholar
  128. 128.
    Rank E (1992) Adaptive remeshing and h-p domain decomposition. Comput Methods Appl Mech Eng 101:299–313zbMATHGoogle Scholar
  129. 129.
    Rank E (1993) A zooming-technique using a hierarchical hp-version of the finite element method. In: Whiteman J (ed) The mathematics of finite elements and applications. John Wiley & Sons, Chichester.Google Scholar
  130. 130.
    Rank E, Düster A, Nübel V, Preusch K, Bruhns OT (2005) High order finite elements for shells. Comput Methods Appl Mech Eng 194:2494–2512zbMATHGoogle Scholar
  131. 131.
    Rank E, Kollmannsberger S, Sorger C, Düster A (2011) Shell finite cell method: a high order fictitious domain approach for thin-walled structures. Comput Methods Appl Mech Eng 200(45):3200–3209zbMATHGoogle Scholar
  132. 132.
    Rank E, Krause R (1997) A multiscale finite element method. Comput Struct 64(1):139–144zbMATHGoogle Scholar
  133. 133.
    Rank E, Ruess M, Kollmannsberger S, Schillinger D, Düster A (2012) Geometric modeling, isogeometric analysis and the finite cell method. Comput Methods Appl Mech Eng 249–250: 104–115Google Scholar
  134. 134.
    Richter T, Wick T (2010) Finite elements for fluid-structure interaction in ale and fully eulerian coordinates. Comput Methods Appl Mech Eng 199:2633–2642zbMATHMathSciNetGoogle Scholar
  135. 135.
    Rogers DF (2001) An introduction to NURBS with historical perspective. Morgan Kaufmann Publishers, Los AltosGoogle Scholar
  136. 136.
    Rueberg T, Cirak F (2012) Subdivision-stabilised immersed B-spline finite elements for moving boundary flows. Comput Methods Appl Mech Eng 209–212:266–283Google Scholar
  137. 137.
    Ruess M, Schillinger D, Bazilevs Y, Varduhn V, Rank E (2013) Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int J Numer Methods Eng 95(10):811–846MathSciNetGoogle Scholar
  138. 138.
    Ruess M, Schillinger D, Özcan AI, Rank E (2014) Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries. Comput Methods Appl Mech Eng 269:46–71zbMATHGoogle Scholar
  139. 139.
    Ruess M, Tal D, Trabelsi N, Yosibash Z, Rank E (2012) The finite cell method for bone simulations: verification and validation. Biomech Model Mechanobiol 11(3):425–437Google Scholar
  140. 140.
    Ruess M, Varduhn V, Yosibash Z, Rank E (2012) A parallel high-order fictitious domain approach for biomechanical applications. In: Parallel and distributed computing, international symposium, pp 279–285.Google Scholar
  141. 141.
    Rvachev VL, Sheiko TL, Shapiro V, Tsukanov I (2000) On completeness of rfm solution structures. Comput Mech 25:305–316zbMATHMathSciNetGoogle Scholar
  142. 142.
    Rvachev VL, Sheiko TL, Shapiro V, Tsukanov I (2001) Transfinite interpolation over implicitly defined sets. Comput Aided Geom Des 18(3):195–220zbMATHMathSciNetGoogle Scholar
  143. 143.
    Sadd MH (2009) Elasticity, theory, applications, and numerics. Academic Press, LondonGoogle Scholar
  144. 144.
    Samet H (1990) The design and analysis of spatial data structures, vol 199. Addison-Wesley, Reading.Google Scholar
  145. 145.
    Samet H (2006) Foundations of multidimensional and metric data structures. Morgan Kaufmann Publishers, Los AltoszbMATHGoogle Scholar
  146. 146.
    Sanches R, Bornemann P, Cirak F (2011) Immersed B-spline (i-spline) finite element method for geometrically complex domains. Comput Methods Appl Mech Eng 200:1432–1445zbMATHMathSciNetGoogle Scholar
  147. 147.
    Sanders JD, Laursen TA, Puso MA (2012) A Nitsche embedded mesh method. Comput Mech 49(2):243–257zbMATHMathSciNetGoogle Scholar
  148. 148.
    Sauerland H, Fries TP (2011) The extended finite element method for two-phase and free-surface flows: a systematic study. J Comput Phys 230:3369–3390zbMATHMathSciNetGoogle Scholar
  149. 149.
    Schileo E, Dall’Ara E, Taddei F, Malandrino A, Schotkamp T, Baleani M, Viceconti M (2008) An accurate estimation of bone density improves the accuracy of subject-specific finite element models. J Biomech 41(11):2483–2491Google Scholar
  150. 150.
    Schillinger D (2012) The \(p\)- and B-spline versions of the geometrically nonlinear finite cell method and hierarchical refinement strategies for adaptive isogeometric and embedded domain analysis. Dissertation, Technische Universität München, http://d-nb.info/103009943X/34
  151. 151.
    Schillinger D, Cai Q, Mundani R-P, Rank E (2013) Nonlinear structural analysis of complex CAD and image based geometric models with the finite cell method. In: Bader M (ed) Lecture notes in computational science and engineering, vol 93. Springer, BerlinGoogle Scholar
  152. 152.
    Schillinger D, Dede’ L, Scott MA, Evans JA, Borden MJ, Rank E, Hughes TJR (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput Methods Appl Mech Eng 249–250:116– 150MathSciNetGoogle Scholar
  153. 153.
    Schillinger D, Düster A, Rank E (2012) The hp-d adaptive finite cell method for geometrically nonlinear problems of solid mechanics. Int J Numer Methods Eng 89:1171–1202Google Scholar
  154. 154.
    Schillinger D, Evans JA, Frischmann F, Hiemstra RR, Hsu M-C, Hughes TJR (2014) Collocation on standard hp finite element meshes: reduced quadrature perspective, cost comparison with standard finite elements, and explicit structural dynamics. ICES REPORT 14–01, The University of Texas at AustinGoogle Scholar
  155. 155.
    Schillinger D, Evans JA, Reali A, Scott MA, Hughes TJR (2013) Isogeometric collocation: cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations. Comput Methods Appl Mech Eng 267:170–232zbMATHMathSciNetGoogle Scholar
  156. 156.
    Schillinger D, Hossain SJ, Hughes TJR (2014) Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis. Comput Methods Appl Mech Eng 277:1–45Google Scholar
  157. 157.
    Schillinger D, Kollmannsberger S, Mundani R-P, Rank E (2010) The finite cell method for geometrically nonlinear problems of solid mechanics. IOP Conf Ser Mater Sci Eng 10:012170Google Scholar
  158. 158.
    Schillinger D, Rank E (2011) An unfitted \(hp\) adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry. Comput Methods Appl Mech Eng 200(47–48):3358–3380zbMATHMathSciNetGoogle Scholar
  159. 159.
    Schillinger D, Ruess M, Düster A, Rank E (2011) The Finite Cell Method for large deformation analysis. PAMM 11(1):271–272Google Scholar
  160. 160.
    Schillinger D, Ruess M, Zander N, Bazilevs Y, Düster A, Rank E (2012) Small and large deformation analysis with the \(p\)- and B-spline versions of the finite cell method. Comput Mech 50(4):445–478zbMATHMathSciNetGoogle Scholar
  161. 161.
    Schmidt R, Kiendl J, Bletzinger KU, Wüchner R (2010) Realization of an integrated structural design process: analysis-suitable geometric modelling and isogeometric analysis. Comput Vis Sci 13(7):315–330zbMATHGoogle Scholar
  162. 162.
    Scott MA, Li X, Sederberg TW, Hughes TJR (2012) Local refinement of analysis-suitable T-splines. Comput Methods Appl Mech Eng 213–216:206–222MathSciNetGoogle Scholar
  163. 163.
    Scott MA, Simpson RN, Evans JA, Lipton S, Bordas SPA, Hughes TJR, Sederberg TW (2013) Isogeometric boundary element analysis using unstructured T-splines. Comput Methods Appl Mech Eng 254:197–221zbMATHMathSciNetGoogle Scholar
  164. 164.
    Scott MA, Thomas DC, Evans EJ (2014) Isogeometric spline forests. Comput Methods Appl Mech Eng 269:222–264zbMATHMathSciNetGoogle Scholar
  165. 165.
    Sehlhorst H-G, Jänicke J, Düster A, Rank E, Steeb H, Diebels S (2009) Numerical investigations of foam-like materials by nested high-order finite element methods. Comput Mech 45:45–59zbMATHGoogle Scholar
  166. 166.
    Seo Y-D, Kim H-J, Youn S-K (2010) Isogeometric topology optimization using trimmed spline surfaces. Comput Methods Appl Mech Eng 199:3270–3296zbMATHMathSciNetGoogle Scholar
  167. 167.
    Shahmiri S, Gerstenberger A, Wall WA (2011) An xfem-based embedding mesh technique for incompressible viscous flows. Int J Numer Methods Fluids 65:166–190zbMATHMathSciNetGoogle Scholar
  168. 168.
    Shepherd JF, Johnson CR (2008) Hexahedral mesh generation constraints. Eng Comput 24(3):195–213Google Scholar
  169. 169.
    Simpson RN, Scott MA, Taus M, Thomas DC, Lian H (2014) Acoustic isogeometric boundary element analysis. Comput Methods Appl Mech Eng 269:265–290zbMATHMathSciNetGoogle Scholar
  170. 170.
    Stavrev A (2012) The role of higher-order geometry approximation and accurate quadrature in NURBS based immersed boundary methods. Master Thesis, Technische Universität München.Google Scholar
  171. 171.
    Stenberg R (1998) Mortaring by a method of J.A. Nitsche. In: Idelshon SR, Oñate E, Dvorkin EN (eds) Computational mechanics: new trends and applications. CIMNE, Barcelona, Spain, pp 47–83Google Scholar
  172. 172.
    Sukumar N, Chopp DL, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190:6183–6200zbMATHGoogle Scholar
  173. 173.
    Süli E, Mayers DF (2003) An introduction to numerical analysis. Cambridge University Press, CambridgezbMATHGoogle Scholar
  174. 174.
    Suri M (1996) Analytical and computational assessment of locking in the hp finite element method. Comput Methods Appl Mech Eng 133(3–4):347–371zbMATHMathSciNetGoogle Scholar
  175. 175.
    Szabó B, Babuška I (1991) Finite element analysis. Wiley, New YorkzbMATHGoogle Scholar
  176. 176.
    Szabó BA, Düster A, Rank E (2004) The p-version of the finite element method. In: Stein E, de Borst R, and Hughes TJR (eds) Encyclopedia of computational mechanics, vol 1, chapter 5. Wiley, New York, pp 119–139.Google Scholar
  177. 177.
    Taddei F, Pani M, Zovatto L, Tonti E, Viceconti M (2008) A new meshless approach for subject-specific strain prediction in long bones: evaluation of accuracy. Clin Biomech 23(9):1192–1199Google Scholar
  178. 178.
    Trabelsi N, Yosibash Z, Milgrom C (2009) Validation of subject-specific automated p-fe analysis of the proximal femur. J Biomech 42(3):234–241Google Scholar
  179. 179.
    Tsukanov I, Shapiro V (2005) Meshfree modeling and analysis of physical fields in heterogeneous media. Adv Comput Math 23:95–124zbMATHMathSciNetGoogle Scholar
  180. 180.
    Ventura G (2002) An augmented Lagrangian approach to essential boundary conditions in meshless methods. Int J Numer Methods Eng 53(4):825–842Google Scholar
  181. 181.
    Vinci C (2009) Application of Dirichlet boundary conditions in the finite cell method. Master Thesis, Technische Universität München.Google Scholar
  182. 182.
    Šolín P, Segeth K, Doležel I (2004) Higher-order finite element methods. Chapman & Hall/CRC, LondonzbMATHGoogle Scholar
  183. 183.
    Vuong AV, Giannelli C, Jüttler B, Simeon B (2011) A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput Methods Appl Mech Eng 200(49–52):3554–3567zbMATHGoogle Scholar
  184. 184.
    Wall WA, Gamnitzer P, Gerstenberger A (2008) Fluid-structure interaction approaches on fixed grids based on two different domain decomposition ideas. Int J Comput Fluid Dyn 22:411–427zbMATHMathSciNetGoogle Scholar
  185. 185.
    Wang W, Zhang Y, Scott MA, Hughes TJR (2011) Converting an unstructured quadrilateral mesh to a standard T-spline surface. Comput Mech 48(4):477–498zbMATHMathSciNetGoogle Scholar
  186. 186.
    Wick T (2013) Fully Eulerian fluid-structure interaction for time-dependent problems. Comput Methods Appl Mech Eng 255:14–26Google Scholar
  187. 187.
    Wriggers P (2008) Nonlinear finite element methods. Springer, BerlinzbMATHGoogle Scholar
  188. 188.
    Yang Z, Kollmannsberger S, Düster A, Ruess M, Garcia EG, Burgkart E, Rank E (2012) Non-standard bone simulation: interactive numerical analysis by computational steering. Comput Vis Sci 14:207–216Google Scholar
  189. 189.
    Yang Z, Ruess M, Kollmannsberger S, Düster A, Rank E (2012) An efficient integration technique for the voxel-based finite cell method. Int J Numer Methods Eng 91:457–471Google Scholar
  190. 190.
    Yosibash Z, Padan R, Joskowicz L, Milgrom C (2007) A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. ASME J Biomech Eng 129:297Google Scholar
  191. 191.
    Yosibash Z, Trabelsi N, Milgrom C (2007) Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations. J Biomech 40(16):3688–3699Google Scholar
  192. 192.
    Yserantant H (1986) On the multi-level splitting of finite element spaces. Numer Math 49:379–412MathSciNetGoogle Scholar
  193. 193.
    Zander N (2011) The finite cell method for linear thermoelasticity. Master Thesis, Technische Universität München.Google Scholar
  194. 194.
    Zander N, Bog T, Elhaddad M, Espinoza R, Hu H, Joly AF, Wu C, Zerbe P, Düster A, Kollmannsberger S, Parvizian J, Ruess M, Schillinger D, Rank E (2014) FCMLab: a finite cell research toolbox for MATLAB. Advances in engineering software, submitted.Google Scholar
  195. 195.
    Zander N, Kollmannsberger S, Ruess M, Yosibash Z, Rank E (2012) The finite cell method for linear thermoelasticity. Comput Math Appl 64(11):3527–3541zbMATHMathSciNetGoogle Scholar
  196. 196.
    Zhang L, Gerstenberger A, Wang X, Liu WK (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193:2051–2067zbMATHMathSciNetGoogle Scholar
  197. 197.
    Zhang Y, Wang W, Hughes TJR (2012) Solid T-spline construction from boundary representations for genus-zero geometry. Comput Methods Appl Mech Eng 249–252:185–197Google Scholar
  198. 198.
    Zhang Y, Wang W, Hughes TJR (2013) Conformal solid T-spline construction from boundary T-spline representations. Comput Mech 51:1051–1059zbMATHMathSciNetGoogle Scholar
  199. 199.
    Zhu T, Atluri SN (1998) A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput Mech 21:211–222zbMATHMathSciNetGoogle Scholar
  200. 200.
    Zienkiewicz OC, Taylor RL (2005) The finite element method-solid mechanics, vol 2, 6th edn. Butterworth-Heinemann, LondonGoogle Scholar
  201. 201.
    Zienkiewicz OC, Taylor RL (2005) The finite element method-the basis, vol 1, 6th edn. Butterworth-Heinemann, LondonGoogle Scholar
  202. 202.
    Zohdi TI, Wriggers P (2001) Aspects of the computational testing of the mechanical properties of microheterogeneous material samples. Int J Numer Methods Eng 50(11):2573–2599zbMATHGoogle Scholar
  203. 203.
    Zohdi TI, Wriggers P (2008) An introduction to computational micromechanics. Springer, BerlinzbMATHGoogle Scholar
  204. 204.
    Zorin D, Schröder P, DeRose T, Kobbelt L, Levin A, Sweldens W (2000) Subdivision for modeling and animation. Tech rep.Google Scholar

Copyright information

© CIMNE, Barcelona, Spain 2014

Authors and Affiliations

  1. 1.Department of Civil, Environmental and Geo-EngineeringUniversity of Minnesota, Twin CitiesMinneapolisUSA
  2. 2.Aerospace Structures and Computational MechanicsDelft University of TechnologyDelftThe Netherlands

Personalised recommendations