Numerical Methods for Solving the Cahn–Hilliard Equation and Its Applicability to Related Energy-Based Models

  • G. Tierra
  • F. Guillén-González


In this paper, we review some numerical methods presented in the literature in the last years to approximate the Cahn–Hilliard equation. Our aim is to compare the main properties of each one of the approaches to try to determine which one we should choose depending on which are the crucial aspects when we approximate the equations. Among the properties that we consider desirable to control are the time accuracy order, energy-stability, unique solvability and the linearity or nonlinearity of the resulting systems. In particular, we concern about the iterative methods used to approximate the nonlinear schemes and the constraints that may arise on the physical and computational parameters. Furthermore, we present the connections of the Cahn–Hilliard equation with other physically motivated systems (not only phase field models) and we state how the ideas of efficient numerical schemes in one topic could be extended to other frameworks in a natural way.



G. Tierra has been supported by ERC-CZ project LL1202 (Ministry of Education, Youth and Sports of the Czech Republic) while F. Guillén-González has been supported by project MTM2012-32325 (Ministerio de Economía y Competitividad, Spain).


  1. 1.
    Abels H. Diffuse interface models for two-phase flows of viscous incompressible fluids, habilitation thesis.
  2. 2.
    Abels H (2012) Strong well-posedness of a diffuse interface model for a viscous, quasi-incompressible two-phase flow. SIAM J Math Anal 44:316–340CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Abels H, Depner D, Garcke H (2013) Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities. J Math Fluid Mech 15:453–480CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Abels H, Garcke H, Grun G (2012) Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math Models Methods Appl Sci 22(03):1150013Google Scholar
  5. 5.
    Allen S, Cahn JW (1979) A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27:1084–1095CrossRefGoogle Scholar
  6. 6.
    Badia S, Guillén-González F, Gutiérrez-Santacreu JV (2011) Finite element approximation of nematic liquid crystal flows using a saddle-point structure. J Comput Phys 230:1686–1706CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Banas L, Nürnberg R (2008) Adaptive finite element methods for Cahn–Hilliard equations. J Comput Appl Math 218:2–11CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Barrett JW, Blowey JF, Garcke H (1999) Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J Numer Anal 37:286–318CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Bates PW, Fife PC (1993) The dynamics of nucleation for the Cahn–Hilliard equation. SIAM J Appl Math 53:990–1008CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Becker R, Feng X, Prohl A (2008) Finite element approximations of the Ericksen–Leslie model for nematic liquid crystal flow. SIAM J Numer Anal 46:1704–1731CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Boyer F (2002) A theoretical and numerical model for the study of incompressible mixture flows. Comput Fluids 31:41–68CrossRefMathSciNetGoogle Scholar
  12. 12.
    Boyer F, Minjeaud S (2011) Numerical schemes for a three component Cahn–Hilliard model. ESAIM: Math Model Numer Anal 45:697–738CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Cahn JW, Hilliard JE (1958) Free energy of a non-uniform system. I. Interfacial free energy. J Chem Phys 28:258–267CrossRefGoogle Scholar
  14. 14.
    Ceniceros HD (2009) Tracking fluid interfaces approaching singular events. Bol Soc Esp Mat Apl 48:31–57Google Scholar
  15. 15.
    Copetti MIM, Elliott CM (1992) Numerical analysis of the Cahn–Hilliard equation with a logarithmic free energy. Numer Math 63:39–65CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Du Q, Li M, Liu C (2007) Analysis of a phase field navier-stokes vesicle-fluid interaction model. Discret Contin Dyn Syst 8:539–556CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Du Q, Liu C, Ryham R, Wang X (2009) Energetic variational approaches in modeling vesicle and fluid interactions. Phys D 238:923–930CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Du Q, Liu C, Wang X (2004) A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J Comput Phys 198:450–468CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Du Q, Liu C, Wang X (2006) Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J Comput Phys 212:757–777CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Du Q, Nicolaides RA (1991) Numerical analysis of a continuum model of phase transition. SIAM J Numer Anal 28:1310–1322CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Du Q, Wang X (2007) Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations. Int J Numer Anal Model 4:441–459zbMATHMathSciNetGoogle Scholar
  22. 22.
    Du Q, Zhang J (2008) Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations. SIAM J Sci Comput 30:1634–1657CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Du Q, Zhu L (2006) Analysis of a mixed finite element method for a phase field bending elasticity model of vesicle membrane deformation. J Comput Math 24:265–280zbMATHMathSciNetGoogle Scholar
  24. 24.
    Elliott CM, French DA (1989) A nonconforming finite-element method for the two-dimensional Cahn–Hilliard equation. SIAM J Numer Anal 26:884–903CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Elliott CM, French DA (1987) Numerical studies of the Cahn–Hilliard equation for phase separation. IMA J Appl Math 38:97–128CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Elliott CM, French DA, Milner FA (1989) A second order splitting method for the Cahn–Hilliard equation. Numer Math 54:575–590CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Elliott CM, Garcke H (1996) On the Cahn–Hilliard equation with degenerate mobility. SIAM J Math Anal 27:404–423CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Elliott CM, Songmu Z (1986) On the Cahn–Hilliard equation. Arch Ration Mech Anal 96:339–357CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Eyre JD, An unconditionally stable one-step scheme for gradient system, unpublished,
  30. 30.
    Feng X (2006) Fully discrete finite element approximations of the Navier–Stokes–Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J Numer Anal 44:1049–1072CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Feng X, Prohl A (2004) Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer Math 99:47–84CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Furihata D (2001) A stable and conservative finite difference scheme for the Cahn–Hilliard equation. Numer Math 87:675–699CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Girault V, Raviart PA (1986) Finite element methods for Navier–Stokes equations: theory and algorithms. Springer, BerlinGoogle Scholar
  34. 34.
    Gomez H, Calo VM, Bazilevs Y, Hughes TJR (2008) Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput Methods Appl Mech Eng 197:4333–4352CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Gomez H, Hughes TJR (2011) Provably unconditionally stable, second-order time-accurate. J Comput Phys 230:5310–5327CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Guillén-González F, Gutiérrez-Santacreu JV (2013) A linear mixed finite element scheme for a nematic Ericksen–Leslie liquid crystal model. ESAIM: Math Model Numer Anal 47:1433–1464CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Guillén-González F, Tierra G (2013) On linear schemes for a Cahn–Hilliard diffuse interface model. J Comput Phys 234:140–171CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Guillén-González F, Tierra G, Second order schemes and time-step adaptivity for Allen–Cahn and Cahn–Hilliard models. SubmittedGoogle Scholar
  39. 39.
    Guillén-González F, Tierra G, Splitting schemes for a Navier–Stokes–Cahn–Hilliard model for two fluids with different densities. SubmittedGoogle Scholar
  40. 40.
    Gurtin D, Polignone D, Viñals J (1996) Two-phase binary fluids and immiscible fluids described by an order parameter. Math Models Methods Appl Sci 6:815–831CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Hohenberg PP, Halperin BI (1977) Theory of dynamic critical phenomena. Rev Mod Phys 49:435–479CrossRefGoogle Scholar
  42. 42.
    Hu Z, Wise SM, Wang C, Lowengrub JS (2009) Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J Comput Phys 228:5323–5339CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Hua J, Lin P, Liu C, Wang Q (2011) Energy law preserving \(C0\) finite element schemes for phase field models in two-phase flow computations. J Comput Phys 230:7115–7131CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Hyon Y, Kwak DY, Liu C (2010) Energetic variational approach in complex fluids: maximum dissipation principle. Discret Contin Dyn Syst 26:1291–1304CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Kay D, Styles V, Suli E (2009) Discontinuous Galerkin finite element approximation of the Cahn–Hilliard Equation with convection. SIAM J Numer Anal 47:2660–2685Google Scholar
  46. 46.
    Kim J (2007) Phase field computations for ternary fluid flows. Comput Methods Appl Mech Eng 196:45–48Google Scholar
  47. 47.
    Kim J (2012) Phase-field models for multi-component fluid flows. Commun Comput Phys 196:613–661Google Scholar
  48. 48.
    Kim J, Kang K, Lowengrub J (2004) Conservative multigrid methods for Cahn–Hilliard fluids. J Comput Phys 193:511–543CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Kim J, Kang K, Lowengrub J (2004) Conservative multigrid methods for ternary Cahn–Hilliard systems. Commun Math Sci 2:53–77CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Kim J, Lowengrub J (2005) Phase field modeling and simulation of three-phase flows. Interfaces Free Boundaries 7:435–466CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    Lin FH (1989) Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena. Commun Pure Appl Math 42:789–814CrossRefzbMATHGoogle Scholar
  52. 52.
    Lin FH, Liu C (1995) Non-parabolic dissipative systems modelling the flow of liquid crystals. Commun Pure Appl Math 4:501–537CrossRefGoogle Scholar
  53. 53.
    Lin FH, Liu C (2000) Existence of solutions for the Ericksen–Leslie system. Arch Ration Mech Anal 154:135–156CrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    Lin P, Liu C (2006) Simulations of singularity dynamics in liquid crystal flows: a \(C^0\) finite element approach. J Comput Phys 215:1411–1427CrossRefGoogle Scholar
  55. 55.
    Lin P, Liu C, Zhang H (2007) An energy law preserving \(C^0\) finite element scheme for simulating the kinematic effects in liquid crystal dynamics. J Comput Phys 227:1411–1427CrossRefzbMATHMathSciNetGoogle Scholar
  56. 56.
    Lowengrub J, Truskinovsky L (1998) Quasi-incompressible Cahn–Hilliard fluids and topological transitions. R Soc Lond Proc Ser A Math Phys Eng Sci 454:2617–2654CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    Mello EVL, Filho OTS (2005) Numerical study of the Cahn–Hilliard equation in one, two and three dimensions. Phys A 347:429–443Google Scholar
  58. 58.
    Minjeaud S (2013) An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/Navier–Stokes model. Numer Methods Partial Differ Eq 29:584–618Google Scholar
  59. 59.
    Novick-Cohen A, Segel LA (1984) Nonlinear aspects of the Cahn–Hilliard equation. Phys D 10:277–298 CrossRefMathSciNetGoogle Scholar
  60. 60.
    Shen J, Wang C, Wang X, Wise S (2012) Second-order convex splitting schemes for gradient flows with Enhrich–Schwoebel type energy: application to thin film epitaxy. SIAM J Numer Anal 50:105–125Google Scholar
  61. 61.
    Shen J, Yang X (2010) A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J Sci Comput 32:1159–1179CrossRefzbMATHMathSciNetGoogle Scholar
  62. 62.
    Shen J, Yang X (2010) Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discret Contin Dyn Syst 28:1669–1691CrossRefzbMATHMathSciNetGoogle Scholar
  63. 63.
    van der Waals JD (1893) The thermodynamic theory of capillarity flow under the hypothesis of a continuous variation of density. Verhandel. Konink. Akad. Weten. Amsterdam, 1Google Scholar
  64. 64.
    Wise SM (2010) Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn–Hilliard–Hele–Shaw system of equations. J Sci Comput 44:1CrossRefMathSciNetGoogle Scholar
  65. 65.
    Wodo O, Ganapathysubramanian B (2011) Computationally efficient solution to the Cahn–Hilliard equation: adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem. J Comput Phys 230:6037–6060CrossRefzbMATHMathSciNetGoogle Scholar
  66. 66.
    Wu X, van Zwieten GJ, van der Zee KG (2013) Stabilized second-order convex splitting schemes for Cahn–Hilliard models with application to diffuse-interface tumor-growth models. Int J Numer Methods Biomed Eng, 30:180–203Google Scholar
  67. 67.
    Yue P, Feng JJ, Liu C, Shen J (2004) A diffuse-interface method for simulating two-phase flows of complex fluids. J Fluid Mech 515:293–317CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2014

Authors and Affiliations

  1. 1.Faculty of Mathematics and Physics, Mathematical InstituteCharles UniversityPrague 8Czech Republic
  2. 2.Dpto. E.D.A.N. Facultad de MatemáticasUniversidad de SevillaSevilleSpain

Personalised recommendations