Skip to main content
Log in

Numerical Methods for Solving the Cahn–Hilliard Equation and Its Applicability to Related Energy-Based Models

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In this paper, we review some numerical methods presented in the literature in the last years to approximate the Cahn–Hilliard equation. Our aim is to compare the main properties of each one of the approaches to try to determine which one we should choose depending on which are the crucial aspects when we approximate the equations. Among the properties that we consider desirable to control are the time accuracy order, energy-stability, unique solvability and the linearity or nonlinearity of the resulting systems. In particular, we concern about the iterative methods used to approximate the nonlinear schemes and the constraints that may arise on the physical and computational parameters. Furthermore, we present the connections of the Cahn–Hilliard equation with other physically motivated systems (not only phase field models) and we state how the ideas of efficient numerical schemes in one topic could be extended to other frameworks in a natural way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels H. Diffuse interface models for two-phase flows of viscous incompressible fluids, habilitation thesis. http://www.mathematik.uni-r.de/abels/PrivateHomepage.html

  2. Abels H (2012) Strong well-posedness of a diffuse interface model for a viscous, quasi-incompressible two-phase flow. SIAM J Math Anal 44:316–340

    Article  MATH  MathSciNet  Google Scholar 

  3. Abels H, Depner D, Garcke H (2013) Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities. J Math Fluid Mech 15:453–480

    Article  MATH  MathSciNet  Google Scholar 

  4. Abels H, Garcke H, Grun G (2012) Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math Models Methods Appl Sci 22(03):1150013

  5. Allen S, Cahn JW (1979) A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27:1084–1095

    Article  Google Scholar 

  6. Badia S, Guillén-González F, Gutiérrez-Santacreu JV (2011) Finite element approximation of nematic liquid crystal flows using a saddle-point structure. J Comput Phys 230:1686–1706

    Article  MATH  MathSciNet  Google Scholar 

  7. Banas L, Nürnberg R (2008) Adaptive finite element methods for Cahn–Hilliard equations. J Comput Appl Math 218:2–11

    Article  MATH  MathSciNet  Google Scholar 

  8. Barrett JW, Blowey JF, Garcke H (1999) Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J Numer Anal 37:286–318

    Article  MATH  MathSciNet  Google Scholar 

  9. Bates PW, Fife PC (1993) The dynamics of nucleation for the Cahn–Hilliard equation. SIAM J Appl Math 53:990–1008

    Article  MATH  MathSciNet  Google Scholar 

  10. Becker R, Feng X, Prohl A (2008) Finite element approximations of the Ericksen–Leslie model for nematic liquid crystal flow. SIAM J Numer Anal 46:1704–1731

    Article  MATH  MathSciNet  Google Scholar 

  11. Boyer F (2002) A theoretical and numerical model for the study of incompressible mixture flows. Comput Fluids 31:41–68

    Article  MathSciNet  Google Scholar 

  12. Boyer F, Minjeaud S (2011) Numerical schemes for a three component Cahn–Hilliard model. ESAIM: Math Model Numer Anal 45:697–738

    Article  MATH  MathSciNet  Google Scholar 

  13. Cahn JW, Hilliard JE (1958) Free energy of a non-uniform system. I. Interfacial free energy. J Chem Phys 28:258–267

    Article  Google Scholar 

  14. Ceniceros HD (2009) Tracking fluid interfaces approaching singular events. Bol Soc Esp Mat Apl 48:31–57

  15. Copetti MIM, Elliott CM (1992) Numerical analysis of the Cahn–Hilliard equation with a logarithmic free energy. Numer Math 63:39–65

    Article  MATH  MathSciNet  Google Scholar 

  16. Du Q, Li M, Liu C (2007) Analysis of a phase field navier-stokes vesicle-fluid interaction model. Discret Contin Dyn Syst 8:539–556

    Article  MATH  MathSciNet  Google Scholar 

  17. Du Q, Liu C, Ryham R, Wang X (2009) Energetic variational approaches in modeling vesicle and fluid interactions. Phys D 238:923–930

    Article  MATH  MathSciNet  Google Scholar 

  18. Du Q, Liu C, Wang X (2004) A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J Comput Phys 198:450–468

    Article  MATH  MathSciNet  Google Scholar 

  19. Du Q, Liu C, Wang X (2006) Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J Comput Phys 212:757–777

    Article  MATH  MathSciNet  Google Scholar 

  20. Du Q, Nicolaides RA (1991) Numerical analysis of a continuum model of phase transition. SIAM J Numer Anal 28:1310–1322

    Article  MATH  MathSciNet  Google Scholar 

  21. Du Q, Wang X (2007) Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations. Int J Numer Anal Model 4:441–459

    MATH  MathSciNet  Google Scholar 

  22. Du Q, Zhang J (2008) Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations. SIAM J Sci Comput 30:1634–1657

    Article  MATH  MathSciNet  Google Scholar 

  23. Du Q, Zhu L (2006) Analysis of a mixed finite element method for a phase field bending elasticity model of vesicle membrane deformation. J Comput Math 24:265–280

    MATH  MathSciNet  Google Scholar 

  24. Elliott CM, French DA (1989) A nonconforming finite-element method for the two-dimensional Cahn–Hilliard equation. SIAM J Numer Anal 26:884–903

    Article  MATH  MathSciNet  Google Scholar 

  25. Elliott CM, French DA (1987) Numerical studies of the Cahn–Hilliard equation for phase separation. IMA J Appl Math 38:97–128

    Article  MATH  MathSciNet  Google Scholar 

  26. Elliott CM, French DA, Milner FA (1989) A second order splitting method for the Cahn–Hilliard equation. Numer Math 54:575–590

    Article  MATH  MathSciNet  Google Scholar 

  27. Elliott CM, Garcke H (1996) On the Cahn–Hilliard equation with degenerate mobility. SIAM J Math Anal 27:404–423

    Article  MATH  MathSciNet  Google Scholar 

  28. Elliott CM, Songmu Z (1986) On the Cahn–Hilliard equation. Arch Ration Mech Anal 96:339–357

    Article  MATH  MathSciNet  Google Scholar 

  29. Eyre JD, An unconditionally stable one-step scheme for gradient system, unpublished, www.math.utah.edu/~eyre/research/methods/stable.ps

  30. Feng X (2006) Fully discrete finite element approximations of the Navier–Stokes–Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J Numer Anal 44:1049–1072

    Article  MATH  MathSciNet  Google Scholar 

  31. Feng X, Prohl A (2004) Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer Math 99:47–84

    Article  MATH  MathSciNet  Google Scholar 

  32. Furihata D (2001) A stable and conservative finite difference scheme for the Cahn–Hilliard equation. Numer Math 87:675–699

    Article  MATH  MathSciNet  Google Scholar 

  33. Girault V, Raviart PA (1986) Finite element methods for Navier–Stokes equations: theory and algorithms. Springer, Berlin

  34. Gomez H, Calo VM, Bazilevs Y, Hughes TJR (2008) Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput Methods Appl Mech Eng 197:4333–4352

    Article  MATH  MathSciNet  Google Scholar 

  35. Gomez H, Hughes TJR (2011) Provably unconditionally stable, second-order time-accurate. J Comput Phys 230:5310–5327

    Article  MATH  MathSciNet  Google Scholar 

  36. Guillén-González F, Gutiérrez-Santacreu JV (2013) A linear mixed finite element scheme for a nematic Ericksen–Leslie liquid crystal model. ESAIM: Math Model Numer Anal 47:1433–1464

    Article  MATH  MathSciNet  Google Scholar 

  37. Guillén-González F, Tierra G (2013) On linear schemes for a Cahn–Hilliard diffuse interface model. J Comput Phys 234:140–171

    Article  MATH  MathSciNet  Google Scholar 

  38. Guillén-González F, Tierra G, Second order schemes and time-step adaptivity for Allen–Cahn and Cahn–Hilliard models. Submitted

  39. Guillén-González F, Tierra G, Splitting schemes for a Navier–Stokes–Cahn–Hilliard model for two fluids with different densities. Submitted

  40. Gurtin D, Polignone D, Viñals J (1996) Two-phase binary fluids and immiscible fluids described by an order parameter. Math Models Methods Appl Sci 6:815–831

    Article  MATH  MathSciNet  Google Scholar 

  41. Hohenberg PP, Halperin BI (1977) Theory of dynamic critical phenomena. Rev Mod Phys 49:435–479

    Article  Google Scholar 

  42. Hu Z, Wise SM, Wang C, Lowengrub JS (2009) Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J Comput Phys 228:5323–5339

    Article  MATH  MathSciNet  Google Scholar 

  43. Hua J, Lin P, Liu C, Wang Q (2011) Energy law preserving \(C0\) finite element schemes for phase field models in two-phase flow computations. J Comput Phys 230:7115–7131

    Article  MATH  MathSciNet  Google Scholar 

  44. Hyon Y, Kwak DY, Liu C (2010) Energetic variational approach in complex fluids: maximum dissipation principle. Discret Contin Dyn Syst 26:1291–1304

    Article  MATH  MathSciNet  Google Scholar 

  45. Kay D, Styles V, Suli E (2009) Discontinuous Galerkin finite element approximation of the Cahn–Hilliard Equation with convection. SIAM J Numer Anal 47:2660–2685

  46. Kim J (2007) Phase field computations for ternary fluid flows. Comput Methods Appl Mech Eng 196:45–48

    Google Scholar 

  47. Kim J (2012) Phase-field models for multi-component fluid flows. Commun Comput Phys 196:613–661

    Google Scholar 

  48. Kim J, Kang K, Lowengrub J (2004) Conservative multigrid methods for Cahn–Hilliard fluids. J Comput Phys 193:511–543

    Article  MATH  MathSciNet  Google Scholar 

  49. Kim J, Kang K, Lowengrub J (2004) Conservative multigrid methods for ternary Cahn–Hilliard systems. Commun Math Sci 2:53–77

    Article  MATH  MathSciNet  Google Scholar 

  50. Kim J, Lowengrub J (2005) Phase field modeling and simulation of three-phase flows. Interfaces Free Boundaries 7:435–466

    Article  MATH  MathSciNet  Google Scholar 

  51. Lin FH (1989) Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena. Commun Pure Appl Math 42:789–814

    Article  MATH  Google Scholar 

  52. Lin FH, Liu C (1995) Non-parabolic dissipative systems modelling the flow of liquid crystals. Commun Pure Appl Math 4:501–537

    Article  Google Scholar 

  53. Lin FH, Liu C (2000) Existence of solutions for the Ericksen–Leslie system. Arch Ration Mech Anal 154:135–156

    Article  MATH  MathSciNet  Google Scholar 

  54. Lin P, Liu C (2006) Simulations of singularity dynamics in liquid crystal flows: a \(C^0\) finite element approach. J Comput Phys 215:1411–1427

    Article  Google Scholar 

  55. Lin P, Liu C, Zhang H (2007) An energy law preserving \(C^0\) finite element scheme for simulating the kinematic effects in liquid crystal dynamics. J Comput Phys 227:1411–1427

    Article  MATH  MathSciNet  Google Scholar 

  56. Lowengrub J, Truskinovsky L (1998) Quasi-incompressible Cahn–Hilliard fluids and topological transitions. R Soc Lond Proc Ser A Math Phys Eng Sci 454:2617–2654

    Article  MATH  MathSciNet  Google Scholar 

  57. Mello EVL, Filho OTS (2005) Numerical study of the Cahn–Hilliard equation in one, two and three dimensions. Phys A 347:429–443

  58. Minjeaud S (2013) An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/Navier–Stokes model. Numer Methods Partial Differ Eq 29:584–618

  59. Novick-Cohen A, Segel LA (1984) Nonlinear aspects of the Cahn–Hilliard equation. Phys D 10:277–298

    Article  MathSciNet  Google Scholar 

  60. Shen J, Wang C, Wang X, Wise S (2012) Second-order convex splitting schemes for gradient flows with Enhrich–Schwoebel type energy: application to thin film epitaxy. SIAM J Numer Anal 50:105–125

  61. Shen J, Yang X (2010) A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J Sci Comput 32:1159–1179

    Article  MATH  MathSciNet  Google Scholar 

  62. Shen J, Yang X (2010) Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discret Contin Dyn Syst 28:1669–1691

    Article  MATH  MathSciNet  Google Scholar 

  63. van der Waals JD (1893) The thermodynamic theory of capillarity flow under the hypothesis of a continuous variation of density. Verhandel. Konink. Akad. Weten. Amsterdam, 1

  64. Wise SM (2010) Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn–Hilliard–Hele–Shaw system of equations. J Sci Comput 44:1

    Article  MathSciNet  Google Scholar 

  65. Wodo O, Ganapathysubramanian B (2011) Computationally efficient solution to the Cahn–Hilliard equation: adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem. J Comput Phys 230:6037–6060

    Article  MATH  MathSciNet  Google Scholar 

  66. Wu X, van Zwieten GJ, van der Zee KG (2013) Stabilized second-order convex splitting schemes for Cahn–Hilliard models with application to diffuse-interface tumor-growth models. Int J Numer Methods Biomed Eng, 30:180–203

  67. Yue P, Feng JJ, Liu C, Shen J (2004) A diffuse-interface method for simulating two-phase flows of complex fluids. J Fluid Mech 515:293–317

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

G. Tierra has been supported by ERC-CZ project LL1202 (Ministry of Education, Youth and Sports of the Czech Republic) while F. Guillén-González has been supported by project MTM2012-32325 (Ministerio de Economía y Competitividad, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Tierra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tierra, G., Guillén-González, F. Numerical Methods for Solving the Cahn–Hilliard Equation and Its Applicability to Related Energy-Based Models. Arch Computat Methods Eng 22, 269–289 (2015). https://doi.org/10.1007/s11831-014-9112-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-014-9112-1

Navigation