Archives of Computational Methods in Engineering

, Volume 21, Issue 3, pp 321–329 | Cite as

Variational-Based Reduced-Order Model in Dynamic Substructuring of Coupled Structures Through a Dissipative Physical Interface: Recent Advances

  • R. Ohayon
  • C. Soize
  • R. Sampaio


This paper deals with a variational-based reduced-order model in dynamic substructuring of two coupled structures through a physical dissipative flexible interface. We consider the linear elastodynamic of a dissipative structure composed of two main dissipative substructures perfectly connected through interfaces by a linking substructure. The linking substructure is flexible and is modeled in the context of the general linear viscoelasticity theory, yielding damping and stiffness operators depending on the frequency, while the two main dissipative substructures are modeled in the context of linear elasticity with an additional classical viscous damping modeling which is assumed to be independent of the frequency. We present recent advances adapted to such a situation, which is positioned with respect to an appropriate review that we carry out on the different methods used in dynamic substructuring. It consists in constructing a reduced-order model using the free-interface elastic modes of the two main substructures and, for the linking substructure, an appropriate frequency-independent elastostatic lifting operator and the frequency-dependent fixed-interface vector basis.


Displacement Field Generalize Eigenvalue Problem Total Stress Tensor Fixed Interface Linear Elastodynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was partially supported by Brazil-France project CAPES-COFECUB Ph672/10.


  1. 1.
    Agrawal BN (1976) Mode synthesis technique for dynamic analysis of structures. J Acoust Soc Am 59:1329–1338CrossRefGoogle Scholar
  2. 2.
    Allen MS, Mayes RL, Bergman EJ (2010) Experimental modal substructuring to couple and uncouple substructures with flexible fixtures and multi-point connections. J Sound Vib 329:4891–4906CrossRefGoogle Scholar
  3. 3.
    Allen MS, Gindlin HM, Mayes RL (2011) Experimental modal substructuring to estimate fixed-base modes from tests on a flexible fixture. J Sound Vib 330:4413–4428CrossRefGoogle Scholar
  4. 4.
    Amsallem D, Farhat C (2011) An online method for interpolationg linear parametric reduced-order models. SIAM J Sci Comput 33:2169–2198CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Argyris JH, Kelsey S (1959) The analysis of fuselages of arbitrary cross-section and taper: a DSIR sponsored reserach program on the development and application of the matrix force method and the digital computer. Aircr Eng Aerosp Technol 31:272–283CrossRefGoogle Scholar
  6. 6.
    Argyris J, Mlejnek HP (1991) Dynamics of structures. North-Holland, AmsterdamzbMATHGoogle Scholar
  7. 7.
    Balmes E (1996) Optimal Ritz vectors for component mode synthesis using the singular value decomposition. AIAA J 34:1256–1260CrossRefzbMATHGoogle Scholar
  8. 8.
    Bathe KJ (1996) Finite element procedures. Prentice-Hall, New YorkGoogle Scholar
  9. 9.
    Bathe KJ, Gracewski S (1981) On non-linear dynamic analysis using substructuring and mode superposition. Comput Struct 13:699–707CrossRefzbMATHGoogle Scholar
  10. 10.
    Bathe KJ, Wilson EL (1976) Numerical methods in finite element analysis. Prentice-Hall, New YorkzbMATHGoogle Scholar
  11. 11.
    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction. Wiley, ChichesterCrossRefzbMATHGoogle Scholar
  12. 12.
    Belytschko TB, Liu WK, Moran B (2000) Nonlinear finite element for continua and structures. Wiley, ChichesterGoogle Scholar
  13. 13.
    Benfield WA, Hruda RF (1971) Vibration analysis of structures by component mode substitution. AIAA J 9:1255–1261CrossRefzbMATHGoogle Scholar
  14. 14.
    Bland DR (1960) The theory of linear viscoelasticity. Pergamon, LondonzbMATHGoogle Scholar
  15. 15.
    Bourquin F, d’Hennezel F (1992) Numerical study of an intrinsic component mode synthesis method. Comput Methods Appl Mech Eng 97:49–76CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Brown AM, Ferri AA (1996) Probabilistic component mode synthesis of nondeterministic substructures. AIAA J 34:830–834CrossRefGoogle Scholar
  17. 17.
    Castanier MP, Tan YC, Pierre C (2001) Characteristic constraint modes for component mode synthesis. AIAA J 39:1182–1187CrossRefGoogle Scholar
  18. 18.
    Chatelin F (2012) Eigenvalues of matrices. Society for Industrial and Applied Mathematics (SIAM), PhiladelphiaCrossRefGoogle Scholar
  19. 19.
    Clough RW, Penzien J (1975) Dynamics of structures. McGraw-Hill, New YorkzbMATHGoogle Scholar
  20. 20.
    Craig RR (1985) A review of time domain and frequency domain component mode synthesis method in Combined experimental-analytical modeling of dynamic structural systems. In: Martinez DR, Miller AK (eds) 67 ASME-AMD. New YorkGoogle Scholar
  21. 21.
    Craig RR, Bampton MCC (1968) Coupling of substructures for dynamic analyses. AIAA J 6:1313–1322CrossRefzbMATHGoogle Scholar
  22. 22.
    Craig RR, Kurdila A (2006) Fundamentals of structural dynamics. Wiley, ChichesterzbMATHGoogle Scholar
  23. 23.
    Dautray R, Lions JL (1992) Mathematical analysis and numerical methods for science and technology. Springer, BerlinzbMATHGoogle Scholar
  24. 24.
    de Klerk D, Rixen DJ, Voormeeren SN (2008) General framework for dynamic substructuring: history, review, and classification of techniques. AIAA J 46:1169–1181CrossRefGoogle Scholar
  25. 25.
    El-Khoury O, Adeli H (2013) Recent advances on vibration control of structures and their dynamic loading. Arch Comput Methods Eng 20:353–360CrossRefGoogle Scholar
  26. 26.
    Ewins DJ (2000) Modal testing: theory, practice and applications, 2nd edn. Research Studies Press Ltd., BaldockGoogle Scholar
  27. 27.
    Farhat C, Geradin M (1994) On a component mode method and its application to incompatible substructures. Comput Struct 51:459–473CrossRefzbMATHGoogle Scholar
  28. 28.
    Felippa CA, Park KC, Farhat C (2001) Partioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190:3247–3270CrossRefzbMATHGoogle Scholar
  29. 29.
    Geradin M, Rixen D (1997) Mechanical vibrations: theory and applications to structural dynamics, 2nd edn. Wiley, ChichesterGoogle Scholar
  30. 30.
    Guyan RJ (1965) Reduction of stiffness and mass matrices. AIAA J 3:380–380CrossRefGoogle Scholar
  31. 31.
    Hale AL, Meirovitch L (1982) A procedure for improving discrete substructure representation in dynamic synthesis. AIAA J 20:1128–1136CrossRefzbMATHGoogle Scholar
  32. 32.
    Har J, Tamma K (2012) Advances in computational dynamics of particles, materials and structures. Wiley, ChichesterCrossRefzbMATHGoogle Scholar
  33. 33.
    Herran M, Nelias D, Combescure A, Chalons H (2011) Optimal component mode synthesis for medium frequency problem. Int J Numer Methods Eng 86:301–315CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Hinke L, Dohnal F, Mace BR, Waters TP, Ferguson NS (2009) Component mode synthesis as a framework for uncertainty analysis. J Sound Vib 324:161–178CrossRefGoogle Scholar
  35. 35.
    Hintz RM (1975) Analytical methods in component modal synthesis. AIAA J 13:1007–1016CrossRefzbMATHGoogle Scholar
  36. 36.
    Hong SK, Epureanu BI, Castanier MP, Gorsich DJ (2011) Parametric reduced-order models for predicting the vibration response of complex structures with component damage and uncertainties. J Sound Vib 330:1091–1110CrossRefGoogle Scholar
  37. 37.
    Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover, New YorkGoogle Scholar
  38. 38.
    Hurty WC (1960) Vibrations of structural systems by component mode synthesis. J Eng Mech 86:51–69Google Scholar
  39. 39.
    Hurty WC (1965) Dynamic analysis of structural systems using component modes. AIAA J 3:678–685CrossRefGoogle Scholar
  40. 40.
    Inman DJ (2006) Vibration with control. Wiley, ChichesterCrossRefGoogle Scholar
  41. 41.
    Irons B (1965) Structural eigenvalue problems: elimination of unwanted variables. AIAA J 3:961–962CrossRefGoogle Scholar
  42. 42.
    Jezequel L (1985) A hybrid method of modal synthesis using vibration tests. J Sound Vib 100:191–210CrossRefGoogle Scholar
  43. 43.
    Kassem M, Soize C, Gagliardini L (2011) Structural partitioning of complex structures in the medium-frequency range: an application to an automotive vehicle. J Sound Vib 330:937–946CrossRefGoogle Scholar
  44. 44.
    Kuhar EJ, Stahle CV (1974) Dynamic transformation method for modal synthesis. AIAA J 12:672–678CrossRefGoogle Scholar
  45. 45.
    Leung AYT (1993) Dynamic stiffness and substructures. Springer, BerlinCrossRefGoogle Scholar
  46. 46.
    Lim CN, Neild SA, Stoten DP, Drury D, Taylor CA (2007) Adaptive control strategy for dynamic substructuring tests. J Eng Mech 133:864–873CrossRefGoogle Scholar
  47. 47.
    Lindberg E, Horlin NE, Goransson P (2013) Component mode synthesis using undeformed interface coupling modes to connect soft and stiff substructures. Shock Vib 20:157–170CrossRefGoogle Scholar
  48. 48.
    Liu WK, Karpov EG, Park HS (2006) Nanomechanics and materials: theory, multiscale methods and applications. Wiley, ChichesterGoogle Scholar
  49. 49.
    Liu W, Ewins DJ (2000) Substructure synthesis via elastic media Part I: Joint identification. In: Proceedings of the 18th IMAC Conference on Computational Challenges in Structural Dynamics (IMAC-XVIII). Book Series: Proceedings of The Society of Photo-Optical Instrumentation Engineers (SPIE) Bellingham, vol 4062, pp 1153–1159Google Scholar
  50. 50.
    MacNeal RH (1971) A hybrid method of component mode synthesis. Comput Struct 1:581–601CrossRefGoogle Scholar
  51. 51.
    Markovic D, Park KC, Ibrahimbegovic A (2007) Reduction of substructural interface degrees of freedom in flexibility-based component mode synthesis. Int J Numer Methods Eng 70:163–180CrossRefzbMATHGoogle Scholar
  52. 52.
    Meirovitch L (1980) Computational methods in structural dynamics. Sijthoff and Noordhoff, RockvillezbMATHGoogle Scholar
  53. 53.
    Meirovitch L, Hale AL (1981) On the substructure synthesis method. AIAA J 19:940–947CrossRefGoogle Scholar
  54. 54.
    Meirovitch L, Kwak MK (1991) Rayleigh–Ritz based substructure synthesis for flexible multibody systems. AIAA J 29:1709–1719CrossRefzbMATHGoogle Scholar
  55. 55.
    Mignolet MP, Soize C, Avalos J (2013) Nonparametric stochastic modeling of structures with uncertain boundary conditions/coupling between substructures. AIAA J 51:1296–1308CrossRefGoogle Scholar
  56. 56.
    Morand HJP, Ohayon R (1979) Substructure variational analysis for the vibrations of coupled. Int J Numer Methods Eng 14:741–755CrossRefzbMATHGoogle Scholar
  57. 57.
    Morand HJP, Ohayon R (1995) Fluid structure interaction. Wiley, ChichesterzbMATHGoogle Scholar
  58. 58.
    Morgan JA, Pierre C, Hulbert GM (1998) Calculation of component mode synthesis matrices from measured frequency response functions, part 1: theory. J Vib Acoust 120:503–508CrossRefGoogle Scholar
  59. 59.
    Morgan JA, Pierre C, Hulbert GM (1998) Calculation of component made synthesis matrices from measured frequency response functions, part 2: application. J Vib Acoust 120:509–516CrossRefGoogle Scholar
  60. 60.
    Nobari AS, Robb DA, Ewins DJ (1995) A new approach to modal-based structural dynamic-model updating and joint identification. Mech Syst Signal Process 9:85–100CrossRefGoogle Scholar
  61. 61.
    Oden JT, Reddy JN (2011) An introduction to the mathematical theory of finite elements. Dover, New YorkGoogle Scholar
  62. 62.
    Ohayon R, Soize C (1998) Structural acoustics and vibration. Academic Press, LondonGoogle Scholar
  63. 63.
    Ohayon R, Soize C (2012) Advanced computational dissipative structural acoustics and fluid-structure interaction in low- and medium-frequency domains - Reduced-order models and uncertainty quantification. Int J Aeronaut Space Sci 13:127–153Google Scholar
  64. 64.
    Ohayon R, Soize C (2013) Structural dynamics in encyclopedia of applied and computational mathematics (EACM). In: Engquist B, Oden JT (eds) Field editor for Mechanics. Springer, New YorkGoogle Scholar
  65. 65.
    Ohayon R, Soize C (2014) Advanced computational vibroacoustics. Cambridge University Press, New YorkCrossRefGoogle Scholar
  66. 66.
    Ohayon R, Soize C (2014) Clarification about component mode synthesis methods for substructures with physical flexible interfaces. Int J Aeronaut Space Sci. Accepted 13 May 2014Google Scholar
  67. 67.
    Ohayon R, Sampaio R, Soize C (1997) Dynamic substructuring of damped structures using singular value decomposition. J Appl Mech 64:292–298CrossRefzbMATHGoogle Scholar
  68. 68.
    Park KC, Park YH (2004) Partitioned component mode synthesis via a flexibility approach. AIAA J 42:1236–1245CrossRefGoogle Scholar
  69. 69.
    Perdahcioglu DA, Geijselaers HJM, Ellenbroek MHM, de Boer A (2012) Dynamic substructuring and reanalysis methods in a surrogate-based design optimization environment. Struct Multidiscip Optim 45:129–138CrossRefMathSciNetGoogle Scholar
  70. 70.
    Philippe B, Sameh A (2011) Eigenvalue and singular value problems 608–615 Encyclopedia of parallel computing. In: Padua D (ed) Springer, BerlinGoogle Scholar
  71. 71.
    Przemieniecki JS (1963) Matrix structural analysis of substructures. AIAA J 1:138–147CrossRefGoogle Scholar
  72. 72.
    Reynders E (2012) System identification methods for (operational) modal analysis: review and comparaison. Arch Comput Methods Eng 19:51–124CrossRefMathSciNetGoogle Scholar
  73. 73.
    Rixen DJ (2004) A dual Craig-Bampton method for dynamic substructuring. J Comput Appl Math 168:383–391CrossRefzbMATHMathSciNetGoogle Scholar
  74. 74.
    Rubin S (1975) Improved component-mode representation for structural dynamic analysis. AIAA J 13:995–1006CrossRefzbMATHGoogle Scholar
  75. 75.
    Saad Y (2011) Numerical methods for large eigenvalue problems. Society for Industrial and Applied Mathematics (SIAM), PhiladelphiaCrossRefzbMATHGoogle Scholar
  76. 76.
    Sanchez-Hubert J, Sanchez-Palencia E (1989) Vibration and coupling of continuous systems: asymptotic methods. Springer, BerlinCrossRefzbMATHGoogle Scholar
  77. 77.
    Sarkar A, Ghanem R (2003) A substructure approach for the midfrequency vibration of stochastic systems. J Acoust Soc Am 113:1922–1934CrossRefGoogle Scholar
  78. 78.
    Soize C (2012) Stochastic models of uncertainties in computational mechanics. American Society of Civil Engineers, RestonCrossRefGoogle Scholar
  79. 79.
    Soize C, Batou A (2011) Stochastic reduced-order model in low-frequency dynamics in presence of numerous local elastic modes. J Appl Mech 78:061003-1–061003-9CrossRefGoogle Scholar
  80. 80.
    Soize C, Chebli H (2003) Random uncertainties model in dynamic substructuring using a nonparametric probabilistic model. J Eng Mech 129:449–457CrossRefGoogle Scholar
  81. 81.
    Soize C, Mziou S (2003) Dynamic substructuring in the medium-frequency range. AIAA J 41:1113–1118CrossRefGoogle Scholar
  82. 82.
    Soize C, Poloskov IE (2012) Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation. Comput Math Appl 64:3594–3612 Google Scholar
  83. 83.
    Suarez LE, Singh MP (1992) Improved fixed interface method for modal synthesis. AIAA J 30:2952–2958CrossRefzbMATHGoogle Scholar
  84. 84.
    Truesdell C (1984) Mechanics of solids, Vol III, theory of viscoelasticity, plasticity, elastic waves and elastic stability. Springer, BerlinGoogle Scholar
  85. 85.
    Tu JY, Yang HT, Lin PY, Chen PC (2013) Dynamics, control and real-time issues related to substructuring techniques: application to the testing of isolated structure systems. J Syst Control Eng 227:507–522Google Scholar
  86. 86.
    Urgueira APV (1989) Dynamic analysis of coupled structures using experimental data. Thesis of the University of London for the Diploma of Imperial College of Science, Technology and Medecine. LondonGoogle Scholar
  87. 87.
    Voormeeren SN, van der Valk PL, Rixen DJ (2011) Generalized methodology for assembly and reduction of component models for dynamic substructuring. AIAA J 49:1010–1020CrossRefGoogle Scholar
  88. 88.
    Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics, 6th edn. Butterworth-Heinemann, AmsterdamzbMATHGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2014

Authors and Affiliations

  1. 1.Structural Mechanics and Coupled Systems LaboratoryConservatoire National des Arts et Métiers (CNAM)ParisFrance
  2. 2.Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRSUniversité Paris-EstMarne-la-ValléeFrance
  3. 3.Mechanical Engineering DepartmentPUC-RioRio de JaneiroBrazil

Personalised recommendations