Mechanical Behaviour in DC Alloys Casting Processes

  • Patricia Barral
  • Peregrina Quintela
  • María Teresa Sánchez
Article
  • 291 Downloads

Abstract

The aim of this work is to give a review of algorithms computationally efficient to simulate the thermo-mechanical behaviour in casting processes, in particular, the butt curl deformation and the contraction of the lateral sides of the slab. The main aim is to give an overview of the most used methods to deal with the nonlinearities due to the thermo-elastic–viscoplastic laws of the involved materials and to the contact condition with the bottom block. To evaluate the efficiency of the proposed methods, some academic tests adapted to the difficulties arising in casting processes are presented. Applications of the techniques proposed to aluminium casting processes are discussed and numerical results are given.

Keywords

Solidification processes Thermal deformations Maxwell-Norton materials Signorini contact condition Duality methods Bermúdez–Moreno algorithm Newton methods  Finite element method 

References

  1. 1.
    Agelet de Saracibar C, Chiumenti M, Cervera M (2006) Current developments on the coupled thermomechanical computational modeling of metal casting processes. Comput Methods Mater Sci 6:15–25Google Scholar
  2. 2.
    Arregui I, Cendán JJ, Parés C, Vázquez C (2008) Numerical solution of a 1-D elastohydrodynamic problem in magnetic storage devices. ESAIM Math Model Numer Anal 42:645–665CrossRefMATHGoogle Scholar
  3. 3.
    Barral P (2001) Análisis matemático y simulación numérica del comportamiento termomecánico de una colada de aluminio. Ph.D. thesis, Universidade de Santiago de Compostela, SpainGoogle Scholar
  4. 4.
    Barral P, Bermúdez A, Muñiz MC, Otero MV, Quintela P, Salgado P (2003) Numerical simulation of some problems related to aluminium casting. J Mater Process Technol 142(2):383–399CrossRefGoogle Scholar
  5. 5.
    Barral P, Moreno C, Quintela P, Sánchez MT (2006) A numerical algorithm for a Signorini problem associated with Maxwell–Norton materials by using generalized Newton’s methods. Comput Methods Appl Mech Eng 195(9–12):880–904CrossRefMATHGoogle Scholar
  6. 6.
    Barral P, Naya-Riveiro MC, Quintela P (2007) Mathematical analysis of a viscoelastic problem with temperature-dependent coefficients. I. Existence and uniqueness. Math Methods Appl Sci 30(13):1545–1568CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Barral P, Quintela P (1999) A numerical method for simulation of thermal stresses during casting of aluminium slabs. Comput Methods Appl Mech Eng 178(1–2):69–88MATHMathSciNetGoogle Scholar
  8. 8.
    Barral P, Quintela P (2000) A numerical algorithm for prediction of thermomechanical deformation during the casting of aluminium alloy ingots. Finite Elem Anal Des 34(2):125–143CrossRefMATHGoogle Scholar
  9. 9.
    Barral P, Quintela P (2000) Numerical analysis of a viscoplastic problem with contact condition taking place in an aluminium casting. J Comput Appl Math 115(1–2):63–86CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Barral P, Quintela P (2001) Asymptotic justification of the treatment of a metallostatic pressure type boundary condition in an aluminium casting. Math Models Methods Appl Sci 11(6):951–977CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Barral P, Quintela P (2002) Asymptotic analysis of a metallostatic pressure type boundary condition modelled by a fictitious domain method in an aluminium casting. Asymptot Anal 30(2):93–116MATHMathSciNetGoogle Scholar
  12. 12.
    Barral P, Quintela P (2002) Existence of a solution for a Signorini contact problem for Maxwell–Norton materials. IMA J Appl Math 67(6):525–549CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Barral P, Quintela P, Sánchez MT (2005) Newton’s algorithm combined with factorization strategies for nonlinear problems arising from industrial processes. In: Coupled problems 2005. An eccomas thematic conference, Abstracts CDGoogle Scholar
  14. 14.
    Barral P, Quintela P, Sánchez MT (2014) A Bermúdez–Moreno algorithm adapted to solve a viscoplastic problem in alloy solidification processes. ESAIM Math Model Numer Anal 48(1):87–106Google Scholar
  15. 15.
    Barral P, Sánchez, MT (2006) A suitable numerical algorithm for the simulation of the butt curl deformation of an aluminium slab. In: Numerical mathematics and advanced applications. Springer, Berlin, pp 1108–1116Google Scholar
  16. 16.
    Bellet M, Jaouen O, Poitrault I (2005) An ALE-FEM approach to the thermomechanics of solidification processes with application to the prediction of pipe shrinkage. Int J Numer Methods Heat Fluid Flow 15(2):120–142CrossRefGoogle Scholar
  17. 17.
    Bensoussan A, Frehse J (1996) Asymptotic behaviour of the time dependent Norton–Hoff law in plasticity theory and H\(^1\) regularity. Comment Math Univ Carol 37:285–304MATHMathSciNetGoogle Scholar
  18. 18.
    Bermúdez A, Gómez D, Muñiz MC, Salgado P (2007) Transient numerical simulation of a thermoelectrical problem in cylindrical induction heating furnaces. Adv Comput Math 26(1–3):39–62CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Bermúdez A, Moreno C (1981) Duality methods for solving variational inequalities. Comput Math Appl 7(1):43–58CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Bermúdez A, Muñiz MC (1999) Numerical solution of a free boundary problem taking place in an electromagnetic casting. Math Models Methods Appl Sci 9(9):1393–1416CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Bermúdez A, Muñiz MC, Salgado P (2003) Asymptotic approximation and numerical simulation of electromagnetic casting. Metall Mater Trans B 34B(1):83–91CrossRefGoogle Scholar
  22. 22.
    Bermúdez A, Nogueiras MR, Vázquez C (2006) Numerical solution of variational inequalities for pricing Asian options by higher order Lagrange–Galerkin methods. Appl Numer Math 56(10–11):1256–1270CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Bermúdez A, Otero MV (2004) Numerical solution of a three-dimensional solidification problem in aluminium casting. Finite Elem Anal Des 40(13–14):1885–1906CrossRefMathSciNetGoogle Scholar
  24. 24.
    Bertsekas DP (1995) Nonlinear programming. Athena Scientific, BelmontMATHGoogle Scholar
  25. 25.
    Besson O, Bourgeois J, Chevalier PA, Rappaz J, Touzani R (1991) Numerical modelling of electromagnetic casting processes. J Comput Phys 92:482–507CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Blanchard D, Le Tallec P (1986) Numerical analysis of the equations of small strains quasistatic elastoviscoplasticity. Numer Math 50(2):147–169CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Bower AF (2010) Applied mechanics of solids. CRC Press, Boca RatonGoogle Scholar
  28. 28.
    Burguera M, Viaño JM (1995) Numerical solving of frictionless contact problems in perfectly plastic bodies. Comput Methods Appl Mech Eng 121(1–4):303–322CrossRefMATHGoogle Scholar
  29. 29.
    Casella E, Giangi M (2001) An analytical and numerical study of the stefan problem with convection by means of an enthalpy method. Math Methods Appl Sci 24(9):623–639CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Cervera M, Agelet de Saracibar C, Chiumenti M (1999) Thermo-mechanical analysis of industrial solidification processes. Int J Num Methods Eng 46:1575–1591CrossRefMATHGoogle Scholar
  31. 31.
    Chen Z, Jiang L (1998) Approximation of a two-phase continuous casting Stefan problem. J Partial Differ Equ 11:59–72MATHMathSciNetGoogle Scholar
  32. 32.
    Chen Z, Shih T, Yue X (2000) Numerical methods for Stefan problems with prescribed convection and nonlinear flux. IMA J Numer Anal 20(1):81–98CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Ciarlet PG (1986) Élasticité tridimensionnelle. Recherches en mathématiques appliquées (research in applied mathematics), vol 1. Masson, ParisGoogle Scholar
  34. 34.
    Ciavaldini JR (1975) Analyse numérique d’un probléme de Stefan á deux phases par une methode d’elements finis. SIAM J Numer Anal 2:464–487CrossRefMathSciNetGoogle Scholar
  35. 35.
    Djaoua M, Suquet P (1984) Évolution quasi-statique des milieux visco-plastiques de Maxwell–Norton. Math Methods Appl Sci 6(2):192–205CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Domitner J, Drezet JM, Wu M (2012) Thermo-mechanical modeling of dendrite deformation in continuous casting of steel. IOP Conf Ser 33(1):012,058CrossRefGoogle Scholar
  37. 37.
    Drezet J, Rappaz M, Krahenbuhl Y (1995) Thermomechanical effects during direct chill and electromagnetic casting of aluminum alloys. Part II: numerical simulation. Light Metals 941–950Google Scholar
  38. 38.
    Drezet JM, Plata M (1995) Thermomechanical effects during direct chill and electromagnetic casting of aluminum alloys. Part I: experimental investigation. Light Metals 931–940Google Scholar
  39. 39.
    Durany J (1983) Contribución al estudio matemático del problema de Stefan en medios no homogéneos. Ph.D. thesis, Universidade de Santiago de Compostela, SpainGoogle Scholar
  40. 40.
    El-Raghy TS, El-Demerdash HA, Ahmed HA, El-Sheikh AM (1995) Modelling of the transient and steady state periods during aluminium DC casting. Light Models pp. 925–929Google Scholar
  41. 41.
    Facchinei F, Pang JS (2003) Finite-dimensional variational inequalities and complementarity problems. Springer Series in Operations Research, Springer-Verlag, New YorkGoogle Scholar
  42. 42.
    Flemings MC (1974) Solidification processing. In: McGraw-Hill series in materials science and engineering. McGraw-Hill, New YorkGoogle Scholar
  43. 43.
    Friaâ A (1978) Le matériau de Norton–Hoff généralisé et ses applications en analyse limite. C R Acad Sci Paris Sér A–B 286(20):A953–A956Google Scholar
  44. 44.
    Friaâ A (1979) La loi de Norton–Hoff généralisée en plasticité et viscoplasticité. Ph.D. thesis, Universite Pierre et Marie Curie, ParisGoogle Scholar
  45. 45.
    Gallardo JM, Parés C, Castro M (2005) A generalized duality method for solving variational inequalities. Applications to some nonlinear Dirichlet problems. Numer Math 100(2):259–291CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Geymonat G, Suquet P (1986) Functional spaces for Norton–Hoff materials. Math Methods Appl Sci 8(2):206–222CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Glowinski R, Le Tallec P (1989) Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM studies in applied mathematics, vol 9. Society for Industrial and Applied Mathematics (SIAM), PhiladelphiaCrossRefGoogle Scholar
  48. 48.
    Gurtin ME (1981) An introduction to continuum mechanics, mathematics in science and engineering, vol 158. Academic Press Inc., New YorkGoogle Scholar
  49. 49.
    Gurtin ME, Fried E, Anand L (2010) The mechanics and thermodynamics of continua. Cambridge University Press, New YorkCrossRefGoogle Scholar
  50. 50.
    Hannart B, Cialti F, Schalkwijk R (1994) Thermal stresses in DC casting of aluminium slabs: application of a finite element model. Light Metals, pp. 879–887Google Scholar
  51. 51.
    Hatch JE (2005) Aluminum: properties and physical metallurgy. American Society for Metals, Materials ParkGoogle Scholar
  52. 52.
    Hill R (1950) The mathematical theory of plasticity. Clarendon Press, OxfordMATHGoogle Scholar
  53. 53.
    Hongjun H, Dingfei Z, MingBo Y (2008) Numerical simulation of thermal stress in cast billets made of AZ31 magnesium alloy during direct-chill casting. J Manuf Process 10:82–88CrossRefGoogle Scholar
  54. 54.
    Kaufman JG, Rooy EL (2004) Aluminum alloy castings: properties, process and applications. ASM International, Materials ParkGoogle Scholar
  55. 55.
    Kikuchi N, Oden JT (1988) Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM studies in applied mathematics, vol 8. Society for Industrial and Applied Mathematics (SIAM), PhiladelphiaCrossRefGoogle Scholar
  56. 56.
    Kim KY (2003) Analysis of gap formation at mold-shell interface during solidification of aluminium alloy plate. ISIJ Int 43(5):647–652CrossRefGoogle Scholar
  57. 57.
    Kinderlehrer D, Stampacchia G (1980) An introduction to variational inequalities and their applications. Pure and applied mathematics. Academic Press, New YorkGoogle Scholar
  58. 58.
    Kristiansson JO, Zetterlund EH (1982) Thermal stresses and strains in the solidifying shell within the primary cooling zone during continuous casting. In: Numerical methods in industrial forming processes. Pineridge Press limited, Swansea, pp 413–423Google Scholar
  59. 59.
    Le Q, Guo S, Zhao Z, Cui J, Zhang X (2007) Numerical simulation of electromagnetic DC casting of magnesium alloys. J Manuf Process 183:194–201CrossRefGoogle Scholar
  60. 60.
    Le Tallec P (1990) Numerical analysis of viscoelastic problems. Recherches en Mathémathiques Appliquées. Masson, ParisGoogle Scholar
  61. 61.
    Lemaitre J, Chaboche JL (1988) Mécanique des matériaux solides. Dunod, ParisGoogle Scholar
  62. 62.
    Lewis RW, Ravindran K (2000) Finite element simulation of metal casting. Int J Numer Methods Eng 47:29–659CrossRefMATHGoogle Scholar
  63. 63.
    Mariaux S, Rappaz M, Krahenbuhl Y, Plata M (1992) Modelling of thermomechanical effects during the start-up phase of the electromagnetic casting process. In: Advances in production and fabrication of light metals and metal matrix composites. Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, pp 175–187Google Scholar
  64. 64.
    Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice-Hall, Englewood CliffsMATHGoogle Scholar
  65. 65.
    Meirmanov AM (1992) The Stefan problem. Walter de Gruyter, New YorkCrossRefMATHGoogle Scholar
  66. 66.
    Morales de Luna T, Castro Díaz MJ, Parés Madroñal C (2011) A duality method for sediment transport based on a modified Meyer-Peter & Müller model. J Sci Comput 48(1–3):258–273Google Scholar
  67. 67.
    Murat M (1978) Compacité par compensation. Ann Scuola Norm Sup Pisa Cl Sci 4(5):489–507MathSciNetGoogle Scholar
  68. 68.
    Naya-Riveiro MC, Quintela P (2008) Modelling of materials with long memory. Int J Solids Struct 45(24):1755–1768MathSciNetGoogle Scholar
  69. 69.
    Nedjar B (2002) An entalphy-based finite element method for nonlinear heat problems involving phase change. Comput Struct 80(1):9–21 Google Scholar
  70. 70.
    Otero MV (2004) Estudio matemático y resolución numérica de modelos que surgen en el estudio de una colada de aluminio. Ph.D. thesis, Universidade de Santiago de Compostela, Santiago de CompostelaGoogle Scholar
  71. 71.
    Özisik MN (1989) Boundary value problems of heat conduction. Dover Publications Inc., New YorkGoogle Scholar
  72. 72.
    Pang JS (1991) A B-differentiable equation-based, globally and locally quadratically convergent algorithm for nonlinear programs, complementarity and variational inequality problems. Math Program 51(1A):101–131CrossRefMATHGoogle Scholar
  73. 73.
    Parés C, Castro M, Macías J (2002) On the convergence of the Bermúdez–Moreno algorithm with constant parameters. Numer Math 92(1):113–128CrossRefMATHMathSciNetGoogle Scholar
  74. 74.
    Parés C, Macías J, Castro M (2001) Duality methods with an automatic choice of parameters. Application to shallow water equations in conservative form. Numer Math 89(1):161–189CrossRefMATHMathSciNetGoogle Scholar
  75. 75.
    Robinson SM (1994) Newton’s method for a class of nonsmooth functions. Set-Valued Anal 2(1–2):291–305CrossRefMATHMathSciNetGoogle Scholar
  76. 76.
    Rubinstein LI (1971) The Stefan problem. no. 27 in translations of mathematical monographs. American Mathematical Society, ProvidenceGoogle Scholar
  77. 77.
    Sánchez MT (2009) Mathematical analysis and numerical simulation of some nonlinear problems in solid mechanics. Ph.D. thesis, Universidade de Santiago de Compostelas, Santiago de CompostelasGoogle Scholar
  78. 78.
    Schneider W, Jensen EK, Carrupt B (1995) Development of a new starting block shape for the dc casting of sheet ingots. Part I: experimental results. Light Metals pp. 961–967Google Scholar
  79. 79.
    Sołek K, Trȩbacz L (2012) Thermo-mechanical model of steel continuous casting process. Arch Metall Mater 57(1):355–361Google Scholar
  80. 80.
    Stefanescu DMVC (1992) ASM handbook. Casting, vol 15. ASM International. The Materials Information Society, Materials ParkGoogle Scholar
  81. 81.
    Stoll HW (2009) Casting design issues and practices. Casting design and performance. ASM International. The Materials Information Society, Materials ParkGoogle Scholar
  82. 82.
    Subroto T, Miroux A, Mortensen D, M’Hamdi M, Eskin DG, Katgerman L (2012) Semi-quantitative predictions of hot tearing and cold cracking in aluminum dc casting using numerical process simulator. IOP Conf Ser 33(1):012068CrossRefGoogle Scholar
  83. 83.
    Sullivan JM, Lynch DR (1988) Numerical simulation of dendritic solidification of an under-cooled melt. Int J Numer Methods Eng 25:415–444CrossRefMATHGoogle Scholar
  84. 84.
    Temam R (1983) Problèmes mathématiques en plasticité. Méthodes mathématiques de l’informatique. Gauthier-Villars, ParisGoogle Scholar
  85. 85.
    Wong WA, Jonas JJ (1968) Aluminum extrusion as a thermally activated process. Trans Metall Soc AIME 242:2271–2280Google Scholar
  86. 86.
    Wriggers P (1995) Finite element algorithms for contact problems. Arch Comput Methods Eng 2(4):1–49CrossRefMathSciNetGoogle Scholar
  87. 87.
    Wu Y, Hill JM, Flint PJ (1994) A novel finite element method for heat transfer in the continuous caster. J Aust Math Soc B 35(3):263–288CrossRefMATHMathSciNetGoogle Scholar
  88. 88.
    Xu Y, Wang JC, Guo SJ, Li XT, Xue GX (2011) Effects of water-restricted panel on the casting process of high strength aluminum alloy ingots. J Manuf Process 211:78–83CrossRefGoogle Scholar
  89. 89.
    Yoo J, Rubinsky B (1983) Numerical computation using finite elements for the moving interface in heat transfer problems with phase transformation. Numer Heat Tranf 6:209–222MATHGoogle Scholar
  90. 90.
    Yoo J, Rubinsky B (1986) A finite element method for the study of solidification processes in the presence of natural convection. Int J Numer Methods Eng 23:1785–1805CrossRefMATHGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2014

Authors and Affiliations

  • Patricia Barral
    • 1
  • Peregrina Quintela
    • 1
  • María Teresa Sánchez
    • 2
  1. 1.Department of Applied MathematicsUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Centro Universitario de la Defensa Zaragoza, Academia General MilitarZaragozaSpain

Personalised recommendations