PGD-Based Computational Vademecum for Efficient Design, Optimization and Control

  • F. Chinesta
  • A. Leygue
  • F. Bordeu
  • J. V. Aguado
  • E. Cueto
  • D. Gonzalez
  • I. Alfaro
  • A. Ammar
  • A. Huerta
Article

Abstract

In this paper we are addressing a new paradigm in the field of simulation-based engineering sciences (SBES) to face the challenges posed by current ICT technologies. Despite the impressive progress attained by simulation capabilities and techniques, some challenging problems remain today intractable. These problems, that are common to many branches of science and engineering, are of different nature. Among them, we can cite those related to high-dimensional problems, which do not admit mesh-based approaches due to the exponential increase of degrees of freedom. We developed in recent years a novel technique, called Proper Generalized Decomposition (PGD). It is based on the assumption of a separated form of the unknown field and it has demonstrated its capabilities in dealing with high-dimensional problems overcoming the strong limitations of classical approaches. But the main opportunity given by this technique is that it allows for a completely new approach for classic problems, not necessarily high dimensional. Many challenging problems can be efficiently cast into a multidimensional framework and this opens new possibilities to solve old and new problems with strategies not envisioned until now. For instance, parameters in a model can be set as additional extra-coordinates of the model. In a PGD framework, the resulting model is solved once for life, in order to obtain a general solution that includes all the solutions for every possible value of the parameters, that is, a sort of computational vademecum. Under this rationale, optimization of complex problems, uncertainty quantification, simulation-based control and real-time simulation are now at hand, even in highly complex scenarios, by combining an off-line stage in which the general PGD solution, the vademecum, is computed, and an on-line phase in which, even on deployed, handheld, platforms such as smartphones or tablets, real-time response is obtained as a result of our queries.

References

  1. 1.
    Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Non-Newton Fluid Mech 139:153–176 MATHCrossRefGoogle Scholar
  2. 2.
    Ammar A, Ryckelynck D, Chinesta F, Keunings R (2006) On the reduction of kinetic theory models related to finitely extensible dumbbells. J Non-Newton Fluid Mech 134:136–147 MATHCrossRefGoogle Scholar
  3. 3.
    Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: transient simulation using space-time separated representation. J Non-Newton Fluid Mech 144:98–121 MATHCrossRefGoogle Scholar
  4. 4.
    Ammar A, Chinesta F, Joyot P (2008) The nanometric and micrometric scales of the structure and mechanics of materials revisited: an introduction to the challenges of fully deterministic numerical descriptions. Int J Multiscale Comput Eng 6(3):191–213 CrossRefGoogle Scholar
  5. 5.
    Ammar A, Pruliere E, Chinesta F, Laso M (2009) Reduced numerical modeling of flows involving liquid-crystalline polymeres. J Non-Newton Fluid Mech 160:140–156 CrossRefGoogle Scholar
  6. 6.
    Ammar A, Normandin M, Daim F, Gonzalez D, Cueto E, Chinesta F (2010) Non-incremental strategies based on separated representations: applications in computational rheology. Commun Math Sci 8(3):671–695 MathSciNetMATHGoogle Scholar
  7. 7.
    Ammar A, Chinesta F, Falco A (2010) On the convergence of a greedy rank-one update algorithm for a class of linear systems. Arch Comput Methods Eng 17(4):473–486 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ammar A, Chinesta F, Diez P, Huerta A (2010) An error estimator for separated representations of highly multidimensional models. Comput Methods Appl Mech Eng 199:1872–1880 MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Ammar A, Normandin M, Chinesta F (2010) Solving parametric complex fluids models in rheometric flows. J Non-Newton Fluid Mech 165:1588–1601 CrossRefGoogle Scholar
  10. 10.
    Ammar A, Cueto E, Chinesta F (2012) Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions. Int J Numer Methods Biomed Eng 28(9):960–973 CrossRefGoogle Scholar
  11. 11.
    Ammar A, Cueto E, Chinesta F Non-incremental PGD solution of parametric uncoupled models defined in evolving domains. Int J Numer Methods Eng. doi:10.1002/nme.4413
  12. 12.
    Barrault M, Maday Y, Nguyen NC, Patera AT (2004) An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C R Math 339(9):667–672 MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Bellomo N (2008) Modeling complex living systems. Birkhäuser, Basel MATHGoogle Scholar
  14. 14.
    Bernoulli Ch (1836) Vademecum des Mechanikers. Cotta, Stuttgart Google Scholar
  15. 15.
    Bialecki RA, Kassab AJ, Fic A (2005) Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis. Int J Numer Methods Eng 62:774–797 MATHCrossRefGoogle Scholar
  16. 16.
    Bird BB, Curtiss CF, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. In: Kinetic theory, vol 2. Wiley, New York Google Scholar
  17. 17.
    Bognet B, Leygue A, Chinesta F, Poitou A, Bordeu F (2012) Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Comput Methods Appl Mech Eng 201:1–12 CrossRefGoogle Scholar
  18. 18.
    Bordeu F, Leygue A, Modesto D, Gonzalez D, Cueto E, Chinesta F Real-time simulation techniques for augmented learning in science and engineering higher education. A PGD approach. Arch Comput Methods Eng, submitted Google Scholar
  19. 19.
    Bui-Thanh T, Willcox K, Ghattas O, Van Bloemen Waanders B (2007) Goal-oriented, model-constrained optimization for reduction of large-scale systems. J Comput Phys 224(2):880–896 MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Burkardt J, Gunzburger M, Lee H-C (2006) POD and CVT-based reduced-order modeling of Navier-Stokes flows. Comput Methods Appl Mech Eng 196:337–355 MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Cancès E, Defranceschi M, Kutzelnigg W, Le Bris C, Maday Y (2003) Computational quantum chemistry: a primer. Handbook of numerical analysis, vol X. Elsevier, Amsterdam, pp 3–270 Google Scholar
  22. 22.
    Chaturantabut S, Sorensen DC (2010) Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput 32:2737–2764 MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Chinesta F, Ammar A, Cueto E (2010) Proper generalized decomposition of multiscale models. Int J Numer Methods Eng 83(8–9):1114–1132 MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Chinesta F, Ammar A, Cueto E (2010) Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch Comput Methods Eng 17(4):327–350 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Chinesta F, Ammar A, Leygue A, Keunings R (2011) An overview of the proper generalized decomposition with applications in computational rheology. J Non-Newton Fluid Mech 166:578–592 MATHCrossRefGoogle Scholar
  26. 26.
    Chinesta F, Ladeveze P, Cueto E (2011) A short review in model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18:395–404 CrossRefGoogle Scholar
  27. 27.
    Chinesta F, Leygue A, Bognet B, Ghnatios Ch, Poulhaon F, Bordeu F, Barasinski A, Poitou A, Chatel S, Maison-Le-Poec S (2012) First steps towards an advanced simulation of composites manufacturing by automated tape placement. Int J Mater Forming. doi:10.1007/s12289-012-1112-9 Google Scholar
  28. 28.
    Cochelin B, Damil N, Potier-Ferry M (1994) The asymptotic numerical method: an efficient perturbation technique for nonlinear structural mechanics. Rev Eur Elem Finis 3:281–297 MathSciNetMATHGoogle Scholar
  29. 29.
    Darema F (1994) Engineering/scientific and commercial applications: differences, similarities, and future evolution. In: Proceedings of the second Hellenic European conference on mathematics and informatics. HERMIS, Paris, vol 1, pp 367–374 Google Scholar
  30. 30.
    Dennis JE Jr., Schnabel RB (1996) Numerical methods for unconstrained optimization and nonlinear equations. Classics in applied mathematics, vol 16. Society for Industrial and Applied Mathematics (SIAM), Philadelphia. Corrected reprint of the 1983 original MATHCrossRefGoogle Scholar
  31. 31.
    Ghnatios Ch, Chinesta F, Cueto E, Leygue A, Breitkopf P, Villon P (2011) Methodological approach to efficient modeling and optimization of thermal processes taking place in a die: application to pultrusion. Composites, Part A 42:1169–1178 CrossRefGoogle Scholar
  32. 32.
    Ghnatios Ch, Masson F, Huerta A, Cueto E, Leygue A, Chinesta F (2012) Proper generalized decomposition based dynamic data-driven control of thermal processes. Comput Methods Appl Mech Eng 213:29–41 CrossRefGoogle Scholar
  33. 33.
    Girault M, Videcoq E, Petit D (2010) Estimation of time-varying heat sources through inversion of a low order model built with the modal identification method from in-situ temperature measurements. Int J Heat Mass Transf 53:206–219 MATHCrossRefGoogle Scholar
  34. 34.
    Gonzalez D, Ammar A, Chinesta F, Cueto E (2010) Recent advances in the use of separated representations. Int J Numer Methods Eng 81(5):637–659 MathSciNetMATHGoogle Scholar
  35. 35.
    Gonzalez D, Masson F, Poulhaon F, Leygue A, Cueto E, Chinesta F (2012) Proper generalized decomposition based dynamic data-driven inverse identification. Math Comput Simul 82(9):1677–1695 MathSciNetCrossRefGoogle Scholar
  36. 36.
    Gunzburger MD, Peterson JS, Shadid JN (2007) Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data. Comput Methods Appl Mech Eng 196:1030–1047 MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
  38. 38.
  39. 39.
  40. 40.
  41. 41.
  42. 42.
  43. 43.
  44. 44.
    Ladevèze P (1989) The large time increment method for the analyze of structures with nonlinear constitutive relation described by internal variables. C R Acad Sci Paris 309:1095–1099 MATHGoogle Scholar
  45. 45.
    Ladevèze P, Nouy A (2002) A multiscale computational method with time and space homogenization. C R, Méc 330(10):683–689 MATHCrossRefGoogle Scholar
  46. 46.
    Ladevèze P, Nouy A, Loiseau O (2002) A multiscale computational approach for contact problems. Comput Methods Appl Mech Eng 191(43):4869–4891 MATHCrossRefGoogle Scholar
  47. 47.
    Ladevèze P, Nouy A (2003) On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput Methods Appl Mech Eng 192(28–30):3061–3087 MATHCrossRefGoogle Scholar
  48. 48.
    Ladevèze P, Néron D, Gosselet P (2007) On a mixed and multiscale domain decomposition method. Comput Methods Appl Mech Eng 96:1526–1540 CrossRefGoogle Scholar
  49. 49.
    Ladevèze P, Passieux J-C, Néron D (2010) The Latin multiscale computational method and the proper generalized decomposition. Comput Methods Appl Mech Eng 199(21–22):1287–1296 MATHCrossRefGoogle Scholar
  50. 50.
    Ladevèze P, Chamoin L (2011) On the verification of model reduction methods based on the proper generalized decomposition. Comput Methods Appl Mech Eng 200:2032–2047 MATHCrossRefGoogle Scholar
  51. 51.
    Lamari H, Ammar A, Cartraud P, Legrain G, Jacquemin F, Chinesta F (2010) Routes for efficient computational homogenization of non-linear materials using the proper generalized decomposition. Arch Comput Methods Eng 17(4):373–391 MathSciNetCrossRefGoogle Scholar
  52. 52.
    Lamari H, Ammar A, Leygue A, Chinesta F (2012) On the solution of the multidimensional Langer’s equation by using the proper generalized decomposition method for modeling phase transitions. Model Simul Mater Sci Eng 20(1):015007 CrossRefGoogle Scholar
  53. 53.
    Le Bris C, Lelièvre T, Maday Y (2009) Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations. Constr Approx 30:621–651 MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Leygue A, Verron E (2010) A first step towards the use of proper general decomposition method for structural optimization. Arch Comput Methods Eng 17(4):465–472 MathSciNetCrossRefGoogle Scholar
  55. 55.
    Leygue A, Chinesta F, Beringhier M, Nguyen TL, Grandidier JC, Pasavento F, Schrefler B Towards a framework for non-linear thermal models in shell domains. Int J Numer Methods Heat Fluid Flow. doi:10.1108/09615531311289105
  56. 56.
    Maday Y, Ronquist EM (2002) A reduced-basis element method. C R Acad Sci Paris, Ser I 335:195–200 MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Maday Y, Patera AT, Turinici G (2002) A priori convergence theory for reduced-basis approximations of single-parametric elliptic partial differential equations. J Sci Comput 17(1–4):437–446 MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Maday Y, Ronquist EM (2004) The reduced basis element method: application to a thermal fin problem. SIAM J Sci Comput 26(1):240–258 MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Néron D, Ladevèze P (2010) Proper generalized decomposition for multiscale and multiphysics problems. Arch Comput Methods Eng 17(4):351–372 MathSciNetCrossRefGoogle Scholar
  60. 60.
    Niroomandi S, Alfaro I, Cueto E, Chinesta F (2008) Real-time deformable models of non-linear tissues by model reduction techniques. Comput Methods Programs Biomed 91:223–231 CrossRefGoogle Scholar
  61. 61.
    Niroomandi S, Alfaro I, Cueto E, Chinesta F (2010) Model order reduction for hyperelastic materials. Int J Numer Methods Eng 81(9):1180–1206 MathSciNetMATHGoogle Scholar
  62. 62.
    Niroomandi S, Alfaro I, Cueto E, Chinesta F (2012) Accounting for large deformations in real-time simulations of soft tissues based on reduced order models. Comput Methods Programs Biomed 105:1–12 CrossRefGoogle Scholar
  63. 63.
    Niroomandi S, Alfaro I, Gonzalez D, Cueto E, Chinesta F (2012) Real time simulation of surgery by reduced order modelling and X-FEM techniques. Int J Numer Methods Biomed Eng 28(5):574–588 MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    Nouy A (2010) Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems. Arch Comput Methods Eng 17:403–434 MathSciNetCrossRefGoogle Scholar
  65. 65.
    NSF Final Report (2006) DDDAS Workshop 2006, Arlington, VA, USA Google Scholar
  66. 66.
    Oden JT, Belytschko T, Fish J, Hughes TJR, Johnson C, Keyes D, Laub A, Petzold L, Srolovitz D, Yip S (2006) Simulation-based engineering science: revolutionizing engineering science through simulation. NSF Blue Ribbon Panel on SBES Google Scholar
  67. 67.
    Park HM, Cho DH (1996) The use of the Karhunen-Loève decomposition for the modelling of distributed parameter systems. Chem Eng Sci 51:81–98 CrossRefGoogle Scholar
  68. 68.
    Passieux J-C, Ladevèze P, Néron D (2010) A scalable time-space multiscale domain decomposition method: adaptive time scale separation. Comput Mech 46(4):621–633 MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Pruliere E, Ferec J, Chinesta F, Ammar A (2010) An efficient reduced simulation of residual stresses in composites forming processes. Int J Mater Forming 3(2):1339–1350 CrossRefGoogle Scholar
  70. 70.
    Pruliere E, Chinesta F, Ammar A (2010) On the deterministic solution of multidimensional parametric models by using the proper generalized decomposition. Math Comput Simul 81:791–810 MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    Rozza G, Huynh DBP, Patera AT (2008) Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations—application to transport and continuum mechanics. Arch Comput Methods Eng 15(3):229–275 MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Ryckelynck D, Hermanns L, Chinesta F, Alarcon E (2005) An efficient a priori model reduction for boundary element models. Eng Anal Bound Elem 29:796–801 MATHCrossRefGoogle Scholar
  73. 73.
    Ryckelynck D, Chinesta F, Cueto E, Ammar A (2006) On the a priori model reduction: overview and recent developments. Arch Comput Methods Eng 13(1):91–128 MathSciNetMATHCrossRefGoogle Scholar
  74. 74.
    Schmidt F, Pirc N, Mongeau M, Chinesta F (2011) Efficient mould cooling optimization by using model reduction. Int J Mater Forming 4(1):71–82 CrossRefGoogle Scholar
  75. 75.
    Various authors (2006) Final report. DDDAS workshop 2006 at Arlington, VA, USA Technical report, National Science Foundation Google Scholar
  76. 76.
    Veroy K, Patera A (2005) Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Int J Numer Methods Fluids 47:773–788 MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    Videcoq E, Quemener O, Lazard M, Neveu A (2008) Heat source identification and on-line temperature control by a branch eigenmodes reduced model. Int J Heat Mass Transf 51:4743–4752 MATHCrossRefGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2013

Authors and Affiliations

  • F. Chinesta
    • 1
  • A. Leygue
    • 1
  • F. Bordeu
    • 1
  • J. V. Aguado
    • 1
  • E. Cueto
    • 2
  • D. Gonzalez
    • 2
  • I. Alfaro
    • 2
  • A. Ammar
    • 3
  • A. Huerta
    • 4
  1. 1.EADS Foundation Chair “Advanced Computational Manufacturing Processes” GEM, UMR CNRS - Centrale NantesInstitut Universtaire de FranceNantes cedex 3France
  2. 2.I3AUniversidad de ZaragozaZaragozaSpain
  3. 3.Arts et Métiers ParisTechAngers cedex 01France
  4. 4.Laboratori de Calcul NumericUniversidad Politecnica de CataluñaBarcelonaSpain

Personalised recommendations