Advertisement

Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling

  • Kenji Takizawa
  • Yuri Bazilevs
  • Tayfun E. Tezduyar
Article

Abstract

This is an extensive overview of the core and special space–time and Arbitrary Lagrangian–Eulerian (ALE) techniques developed by the authors’ research teams for patient-specific cardiovascular fluid–structure interaction (FSI) modeling. The core techniques are the ALE-based variational multiscale (ALE-VMS) method, the Deforming-Spatial-Domain/Stabilized Space–Time formulation, and the stabilized space–time FSI technique. The special techniques include methods for calculating an estimated zero-pressure arterial geometry, prestressing of the blood vessel wall, a special mapping technique for specifying the velocity profile at an inflow boundary with non-circular shape, techniques for using variable arterial wall thickness, mesh generation techniques for building layers of refined fluid mechanics mesh near the arterial walls, a recipe for pre-FSI computations that improve the convergence of the FSI computations, the Sequentially-Coupled Arterial FSI technique and its multiscale versions, techniques for the projection of fluid–structure interface stresses, calculation of the wall shear stress and oscillatory shear index, arterial-surface extraction and boundary condition techniques, and a scaling technique for specifying a more realistic volumetric flow rate. With results from earlier computations, we show how these core and special FSI techniques work in patient-specific cardiovascular simulations.

Keywords

ALE methods Cardiovascular fluid mechanics Cerebral aneurysms Fluid–structure interactions Left ventricular assist devices Space–time methods Special techniques Total cavopulmonary connection 

Notes

Acknowledgements

This work was supported in part by a seed grant from the Gulf Coast Center for Computational Cancer Research funded by John & Ann Doerr Fund for Computational Biomedicine. It was also supported in part by the Rice Computational Research Cluster funded by NSF Grant CNS-0821727. This work was also partially supported by the UC San Diego Chancellor’s grant. We thank the Texas Advanced Computing Center (TACC) at the University of Texas at Austin for providing HPC resources that have contributed to the research reported. We also thank SINTEF, ICT for partially supporting this work. Prof. Tor Ingebrigtsen and Dr. Jorgen Isaksen of the Institute for Clinical Medicine, University of Tromsø, Norway and the Department of Neurosurgery, the University Hospital of Northern Norway provided us with patient-specific cerebral aneurysm data. Prof. Jessica Zhang and Wenyan Wang at Carnegie Mellon University provided us with meshes of the aneurysm models employed in this work. We would like to thank Fred Nugen for segmenting the thoracic aorta model. We would also like to thank Rebecca Boon of TACC for her help with visualization. Finally, we thank Dr. Ryo Torii (Imperial College) for the inflow velocity waveform used in the computations and the arterial geometry used in Sects. 11.111.3.

References

  1. 1.
    Humphrey J (2002) Cardiovascular solid mechanics, cells, tissues, and organs. Springer, New York Google Scholar
  2. 2.
    Holzapfel G (2000) Nonlinear solid mechanics, a continuum approach for engineering. Wiley, Chichester zbMATHGoogle Scholar
  3. 3.
    Holzapfel G, Ogden R (2010) Constitutive modelling of arteries. Proc R Soc A 466:1551–1596 MathSciNetzbMATHGoogle Scholar
  4. 4.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195:2002–2027. doi: 10.1016/j.cma.2004.09.014 MathSciNetzbMATHGoogle Scholar
  5. 5.
    Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195:5743–5753. doi: 10.1016/j.cma.2005.08.023 MathSciNetzbMATHGoogle Scholar
  6. 6.
    Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: Solution techniques. Int J Numer Methods Fluids 54:855–900. doi: 10.1002/fld.1430 MathSciNetzbMATHGoogle Scholar
  7. 7.
    Förster C, Wall W, Ramm E (2007) Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput Methods Appl Mech Eng 196:1278–1293 zbMATHGoogle Scholar
  8. 8.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Influence of wall elasticity on image-based blood flow simulation. Jpn Soc Mech Eng J Ser A 70:1224–1231 (in Japanese) Google Scholar
  9. 9.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput Methods Appl Mech Eng 195:1885–1895. doi: 10.1016/j.cma.2005.05.050 MathSciNetzbMATHGoogle Scholar
  10. 10.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36:160–168. doi: 10.1016/j.compfluid.2005.07.014 zbMATHGoogle Scholar
  11. 11.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43:151–159. doi: 10.1007/s00466-008-0325-8 zbMATHGoogle Scholar
  12. 12.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498 Google Scholar
  13. 13.
    Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77–89 MathSciNetzbMATHGoogle Scholar
  14. 14.
    Bazilevs Y, del Alamo JC, Humphrey JD (2010) From imaging to prediction: emerging non-invasive methods in pediatric cardiology. Prog Pediatr Cardiol 30:81–89 Google Scholar
  15. 15.
    Figueroa C, Baek S, Taylor C, Humphrey J (2009) A computational framework for fluid–solid–growth modeling in cardiovascular simulations. Comput Methods Appl Mech Eng 199:3583–3602 MathSciNetGoogle Scholar
  16. 16.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38:482–490. doi: 10.1007/s00466-006-0065-6 zbMATHGoogle Scholar
  17. 17.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322 MathSciNetzbMATHGoogle Scholar
  18. 18.
    Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54:901–922. doi: 10.1002/fld.1443 MathSciNetzbMATHGoogle Scholar
  19. 19.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54:995–1009. doi: 10.1002/fld.1497 MathSciNetzbMATHGoogle Scholar
  20. 20.
    Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2007) YZβ discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int J Numer Methods Fluids 54:593–608. doi: 10.1002/fld.1484 MathSciNetzbMATHGoogle Scholar
  21. 21.
    Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Methods Fluids 57:601–629. doi: 10.1002/fld.1633 MathSciNetzbMATHGoogle Scholar
  22. 22.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37 MathSciNetzbMATHGoogle Scholar
  23. 23.
    Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39:3172–3178 Google Scholar
  24. 24.
    Maynard JP, Nithiarasu P (2008) A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method. Commun Numer Methods Eng 24:367–417 Google Scholar
  25. 25.
    Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198:3524–3533. doi: 10.1016/j.cma.2008.05.024 MathSciNetzbMATHGoogle Scholar
  26. 26.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng 198:3613–3621. doi: 10.1016/j.cma.2008.08.020 MathSciNetzbMATHGoogle Scholar
  27. 27.
    Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550 MathSciNetzbMATHGoogle Scholar
  28. 28.
    Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26:101–116. doi: 10.1002/cnm.1241 zbMATHGoogle Scholar
  29. 29.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46:17–29. doi: 10.1007/s00466-009-0423-2 MathSciNetzbMATHGoogle Scholar
  30. 30.
    Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46:31–41. doi: 10.1007/s00466-009-0425-0 MathSciNetzbMATHGoogle Scholar
  31. 31.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26:336–347. doi: 10.1002/cnm.1289 MathSciNetzbMATHGoogle Scholar
  32. 32.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms. Comput Mech 46:43–52. doi: 10.1007/s00466-009-0439-7 zbMATHGoogle Scholar
  33. 33.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46:3–16 MathSciNetzbMATHGoogle Scholar
  34. 34.
    Sugiyama K, Ii S, Takeuchi S, Takagi S, Matsumoto Y (2010) Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow. Comput Mech 46:147–157 MathSciNetzbMATHGoogle Scholar
  35. 35.
    Mut F, Aubry R, Lohner R, Cebral JR (2010) Fast numerical solutions of patient-specific blood flows in 3D arterial systems. Int J Numer Methods Biomed Eng 26:73–85 zbMATHGoogle Scholar
  36. 36.
    Bevan RLT, Nithiarasu P, Loon RV, Sazanov I, Luckraz H, Garnham A (2010) Application of a locally conservative Galerkin (LCG) method for modelling blood flow through a patient-specific carotid bifurcation. Int J Numer Methods Fluids. doi: 10.1002/fld.2313. Published online Google Scholar
  37. 37.
    Chitra K, Sundararajan T, Vengadesan S, Nithiarasu P (2010) Non-Newtonian blood flow study in a model cavopulmonary vascular system. Int J Numer Methods Fluids. doi: 10.1002/fld.2256. Published online zbMATHGoogle Scholar
  38. 38.
    Cebral JR, Mut F, Sforza D, Lohner R, Scrivano E, Lylyk P, Putnam C (2010) Clinical application of image-based CFD for cerebral aneurysms. Int J Numer Methods Biomed Eng. doi: 10.1002/cnm.1373. Published online Google Scholar
  39. 39.
    Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65:308–323. doi: 10.1002/fld.2360 zbMATHGoogle Scholar
  40. 40.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. Int J Numer Methods Fluids 65:135–149. doi: 10.1002/fld.2415 MathSciNetzbMATHGoogle Scholar
  41. 41.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2011) Influencing factors in image-based fluid–structure interaction computation of cerebral aneurysms. Int J Numer Methods Fluids 65:324–340. doi: 10.1002/fld.2448 zbMATHGoogle Scholar
  42. 42.
    Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng 27:1665–1710. doi: 10.1002/cnm.1433 MathSciNetGoogle Scholar
  43. 43.
    Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elem Anal Des 47:593–599 MathSciNetGoogle Scholar
  44. 44.
    Takizawa K, Brummer T, Tezduyar TE, Chen PR (2012) A comparative study based on patient-specific fluid–structure interaction modeling of cerebral aneurysms. J Appl Mech 79:010908. doi: 10.1115/1.4005071 Google Scholar
  45. 45.
    Moghadam ME, Bazilevs Y, Hsia T-Y, Vignon-Clementel IE, Marsden AL, M. of Congenital Hearts Alliance (MOCHA) (2011) A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48:277–291. doi: 10.1007/s00466-011-0599-0 MathSciNetzbMATHGoogle Scholar
  46. 46.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349 MathSciNetzbMATHGoogle Scholar
  47. 47.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26:27–36. doi: 10.1109/2.237441 Google Scholar
  48. 48.
    Behr M, Johnson A, Kennedy J, Mittal S, Tezduyar T (1993) Computation of incompressible flows with implicit finite element implementations on the connection machine. Comput Methods Appl Mech Eng 108:99–118. doi: 10.1016/0045-7825(93)90155-Q MathSciNetzbMATHGoogle Scholar
  49. 49.
    Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119:157–177. doi: 10.1016/0045-7825(94)00082-4 zbMATHGoogle Scholar
  50. 50.
    Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid-body interactions. Comput Methods Appl Mech Eng 112:253–282. doi: 10.1016/0045-7825(94)90029-9 MathSciNetzbMATHGoogle Scholar
  51. 51.
    Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94. doi: 10.1016/0045-7825(94)00077-8 zbMATHGoogle Scholar
  52. 52.
    Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows: fluid-structure interactions. Int J Numer Methods Fluids 21:933–953. doi: 10.1002/fld.1650211011 zbMATHGoogle Scholar
  53. 53.
    Aliabadi SK, Tezduyar TE (1995) Parallel fluid dynamics computations in aerospace applications. Int J Numer Methods Fluids 21:783–805. doi: 10.1002/fld.1650211003 MathSciNetzbMATHGoogle Scholar
  54. 54.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18:397–412. doi: 10.1007/BF00350249 zbMATHGoogle Scholar
  55. 55.
    Johnson AA, Tezduyar TE (1996) Simulation of multiple spheres falling in a liquid-filled tube. Comput Methods Appl Mech Eng 134:351–373. doi: 10.1016/0045-7825(95)00988-4 MathSciNetzbMATHGoogle Scholar
  56. 56.
    Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24:1321–1340. doi: 10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.3.CO;2-C zbMATHGoogle Scholar
  57. 57.
    Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23:130–143. doi: 10.1007/s004660050393 zbMATHGoogle Scholar
  58. 58.
    Behr M, Tezduyar T (1999) The shear-slip mesh update method. Comput Methods Appl Mech Eng 174:261–274. doi: 10.1016/S0045-7825(98)00299-0 zbMATHGoogle Scholar
  59. 59.
    Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190:321–332. doi: 10.1016/S0045-7825(00)00204-8 zbMATHGoogle Scholar
  60. 60.
    Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid–structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190:373–386. doi: 10.1016/S0045-7825(00)00208-5 zbMATHGoogle Scholar
  61. 61.
    Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130. doi: 10.1007/BF02897870 zbMATHGoogle Scholar
  62. 62.
    Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191:717–726. doi: 10.1016/S0045-7825(01)00311-5 zbMATHGoogle Scholar
  63. 63.
    Stein K, Benney R, Tezduyar T, Potvin J (2001) Fluid–structure interactions of a cross parachute: numerical simulation. Comput Methods Appl Mech Eng 191:673–687. doi: 10.1016/S0045-7825(01)00312-7 zbMATHGoogle Scholar
  64. 64.
    Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190:3009–3019 zbMATHGoogle Scholar
  65. 65.
    Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput Methods Appl Mech Eng 190:3189–3200. doi: 10.1016/S0045-7825(00)00388-1 zbMATHGoogle Scholar
  66. 66.
    Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70:58–63. doi: 10.1115/1.1530635 zbMATHGoogle Scholar
  67. 67.
    Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193:2019–2032. doi: 10.1016/j.cma.2003.12.046 zbMATHGoogle Scholar
  68. 68.
    van Brummelen EH, de Borst R (2005) On the nonnormality of subiteration for a fluid-structure interaction problem. SIAM J Sci Comput 27:599–621 MathSciNetzbMATHGoogle Scholar
  69. 69.
    Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36:191–206. doi: 10.1016/j.compfluid.2005.02.011 MathSciNetzbMATHGoogle Scholar
  70. 70.
    Brenk M, Bungartz H-J, Mehl M, Neckel T (2006) Fluid–structure interaction on Cartesian grids: flow simulation and coupling environment. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 233–269 Google Scholar
  71. 71.
    Lohner R, Cebral JR, Yang C, Baum JD, Mestreau EL, Soto O (2006) Extending the range of applicability of the loose coupling approach for FSI simulations. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 82–100 Google Scholar
  72. 72.
    Bletzinger K-U, Wuchner R, Kupzok A (2006) Algorithmic treatment of shells and free form-membranes in FSI. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 336–355 Google Scholar
  73. 73.
    Sawada T, Hisada T (2007) Fluid–structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method. Comput Fluids 36:136–146 zbMATHGoogle Scholar
  74. 74.
    Takizawa K, Yabe T, Tsugawa Y, Tezduyar TE, Mizoe H (2007) Computation of free–surface flows and fluid–object interactions with the CIP method based on adaptive meshless Soroban grids. Comput Mech 40:167–183. doi: 10.1007/s00466-006-0093-2 zbMATHGoogle Scholar
  75. 75.
    Takizawa K, Tanizawa K, Yabe T, Tezduyar TE (2007) Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids. Int J Numer Methods Fluids 54:1011–1019. doi: 10.1002/fld.1466 zbMATHGoogle Scholar
  76. 76.
    Yabe T, Takizawa K, Tezduyar TE, Im H-N (2007) Computation of fluid–solid and fluid–fluid interfaces with the CIP method based on adaptive Soroban grids—an overview. Int J Numer Methods Fluids 54:841–853. doi: 10.1002/fld.1473 MathSciNetzbMATHGoogle Scholar
  77. 77.
    Manguoglu M, Sameh AH, Tezduyar TE, Sathe S (2008) A nested iterative scheme for computation of incompressible flows in long domains. Comput Mech 43:73–80. doi: 10.1007/s00466-008-0276-0 MathSciNetzbMATHGoogle Scholar
  78. 78.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43:39–49. doi: 10.1007/s00466-008-0261-7 zbMATHGoogle Scholar
  79. 79.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43:133–142. doi: 10.1007/s00466-008-0260-8 zbMATHGoogle Scholar
  80. 80.
    Sathe S, Tezduyar TE (2008) Modeling of fluid–structure interactions with the space–time finite elements: contact problems. Comput Mech 43:51–60. doi: 10.1007/s00466-008-0299-6 MathSciNetzbMATHGoogle Scholar
  81. 81.
    Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Comput Mech 43:81–90 zbMATHGoogle Scholar
  82. 82.
    Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43:143–150 MathSciNetzbMATHGoogle Scholar
  83. 83.
    Heil M, Hazel AL, Boyle J (2008) Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches. Comput Mech 43:91–101 zbMATHGoogle Scholar
  84. 84.
    Sternel DC, Schaefer M, Heck M, Yigit S (2008) Efficiency and accuracy of fluid–structure interaction simulations using an implicit partitioned approach. Comput Mech 43:103–113 zbMATHGoogle Scholar
  85. 85.
    Mehl M, Brenk M, Bungartz H-J, Daubner K, Muntean IL, Neckel T (2008) An Eulerian approach for partitioned fluid–structure simulations on Cartesian grids. Comput Mech 43:115–124 zbMATHGoogle Scholar
  86. 86.
    Idelsohn SR, Marti J, Souto-Iglesias A, Onate E (2008) Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM. Comput Mech 43:125–132 zbMATHGoogle Scholar
  87. 87.
    Idelsohn SR, Marti J, Limache A, Onate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid–structure interaction problems via the PFEM. Comput Methods Appl Mech Eng 197:1762–1776 MathSciNetzbMATHGoogle Scholar
  88. 88.
    Manguoglu M, Sameh AH, Saied F, Tezduyar TE, Sathe S (2009) Preconditioning techniques for nonsymmetric linear systems in computation of incompressible flows. J Appl Mech 76:021204. doi: 10.1115/1.3059576 Google Scholar
  89. 89.
    Idelsohn SR, Pin FD, Rossi R, Onate E (2009) Fluid-structure interaction problems with strong added-mass effect. Int J Numer Methods Eng 80:1261–1294 zbMATHGoogle Scholar
  90. 90.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46:83–89. doi: 10.1007/s00466-009-0426-z zbMATHGoogle Scholar
  91. 91.
    Mayer UM, Popp A, Gerstenberger A, Wall WA (2010) 3D fluid–structure–contact interaction based on a combined XFEM FSI and dual mortar contact approach. Comput Mech 46:53–67 MathSciNetzbMATHGoogle Scholar
  92. 92.
    Calderer R, Masud A (2010) A multiscale stabilized ALE formulation for incompressible flows with moving boundaries. Comput Mech 46:185–197 MathSciNetzbMATHGoogle Scholar
  93. 93.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64:1201–1218. doi: 10.1002/fld.2221 zbMATHGoogle Scholar
  94. 94.
    Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416 zbMATHGoogle Scholar
  95. 95.
    Ryzhakov PB, Rossi R, Idelsohn SR, Onate E (2010) A monolithic Lagrangian approach for fluid–structure interaction problems. Comput Mech 46:883–899 MathSciNetzbMATHGoogle Scholar
  96. 96.
    Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65:207–235. doi: 10.1002/fld.2400 zbMATHGoogle Scholar
  97. 97.
    Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236–253 zbMATHGoogle Scholar
  98. 98.
    Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Methods Fluids 65:271–285. doi: 10.1002/fld.2348 zbMATHGoogle Scholar
  99. 99.
    Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65:286–307. doi: 10.1002/fld.2359 zbMATHGoogle Scholar
  100. 100.
    Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48:247–267. doi: 10.1007/s00466-011-0571-z MathSciNetzbMATHGoogle Scholar
  101. 101.
    Takizawa K, Spielman T, Tezduyar TE (2011) Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48:345–364. doi: 10.1007/s00466-011-0590-9 zbMATHGoogle Scholar
  102. 102.
    Takizawa K, Spielman T, Moorman C, Tezduyar TE (2012) Fluid–structure interaction modeling of spacecraft parachutes for simulation-based design. J Appl Mech 79:010907. doi: 10.1115/1.4005070 Google Scholar
  103. 103.
    Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79:010903. doi: 10.1115/1.4005073 Google Scholar
  104. 104.
    Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48:647–657. doi: 10.1007/s00466-011-0614-5 zbMATHGoogle Scholar
  105. 105.
    Sawada T, Tezuka A (2011) LLM and X-FEM based interface modeling of fluid–thin structure interactions on a non-interface-fitted mesh. Comput Mech 48:319–332. doi: 10.1007/s00466-011-0600-y MathSciNetzbMATHGoogle Scholar
  106. 106.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) A parallel sparse algorithm targeting arterial fluid mechanics computations. Comput Mech 48:377–384. doi: 10.1007/s00466-011-0619-0 zbMATHGoogle Scholar
  107. 107.
    Onate E, Celigueta MA, Idelsohn SR, Salazar F, Suarez B (2011) Possibilities of the particle finite element method for fluid–soil–structure interaction problems. Comput Mech 48:307–318. doi: 10.1007/s00466-011-0617-2 MathSciNetzbMATHGoogle Scholar
  108. 108.
    Takase S, Kashiyama K, Tanaka S, Tezduyar TE (2011) Space–time SUPG finite element computation of shallow-water flows with moving shorelines. Comput Mech 48:293–306. doi: 10.1007/s00466-011-0618-1 MathSciNetzbMATHGoogle Scholar
  109. 109.
    Nagaoka S, Nakabayashi Y, Yagawa G, Kim YJ (2011) Accurate fluid–structure interaction computations using elements without mid-side nodes. Comput Mech 48:269–276. doi: 10.1007/s00466-011-0620-7 MathSciNetzbMATHGoogle Scholar
  110. 110.
    Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid–structure interactions. Arch Comput Methods Eng 19:125–169. doi: 10.1007/s11831-012-9070-4 Google Scholar
  111. 111.
    Gerbeau J, Vidrascu M, Frey P (2005) Fluid-structure interaction in blood flows on geometries based on medical images. Comput Struct 83:155–165 Google Scholar
  112. 112.
    Fernandez M, Moubachir M (2005) A Newton method using exact jacobians for solving fluid-structure coupling. Comput Struct 83:127–142 Google Scholar
  113. 113.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44. doi: 10.1016/S0065-2156(08)70153-4 MathSciNetzbMATHGoogle Scholar
  114. 114.
    Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351. doi: 10.1016/0045-7825(92)90059-S MathSciNetzbMATHGoogle Scholar
  115. 115.
    Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353–371. doi: 10.1016/0045-7825(92)90060-W MathSciNetzbMATHGoogle Scholar
  116. 116.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575. doi: 10.1002/fld.505 MathSciNetzbMATHGoogle Scholar
  117. 117.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259 MathSciNetzbMATHGoogle Scholar
  118. 118.
    Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95:221–242. doi: 10.1016/0045-7825(92)90141-6 zbMATHGoogle Scholar
  119. 119.
    Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: a stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59:85–99 MathSciNetzbMATHGoogle Scholar
  120. 120.
    Hughes TJR, Hulbert GM (1988) Space–time finite element methods for elastodynamics: formulations and error estimates. Comput Methods Appl Mech Eng 66:339–363 MathSciNetzbMATHGoogle Scholar
  121. 121.
    Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods—space–time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-Vol.246/AMD-Vol 143. ASME, New York, pp 7–24 Google Scholar
  122. 122.
    Tezduyar TE (2004) Finite element methods for fluid dynamics with moving boundaries and interfaces. In: Stein E, Borst RD, Hughes TJR (eds) Encyclopedia of computational mechanics. Fluids, vol 3. Wiley, New York. Chapter 17 Google Scholar
  123. 123.
    Tezduyar TE, Takizawa K, Christopher J (2009) Multiscale sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique. In: Hartmann S, Meister A, Schaefer M, Turek S (eds) International workshop on fluid–structure interaction—theory, numerics and applications. Kassel University Press, Kassel, pp 231–252 Google Scholar
  124. 124.
    Tezduyar TE, Cragin T, Sathe S, Nanna B (2007) FSI computations in arterial fluid mechanics with estimated zero-pressure arterial geometry. In: Onate E, Garcia J, Bergan P, Kvamsdal T (eds) Marine 2007. CIMNE, Barcelona Google Scholar
  125. 125.
    Tezduyar TE, Schwaab M, Sathe S (2007) Arterial fluid mechanics with the sequentially-coupled arterial FSI technique. In: Onate E, Papadrakakis M, Schrefler B (eds) Coupled problems 2007. CIMNE, Barcelona Google Scholar
  126. 126.
    Wells RE Jr, Merrill EW (1961) Shear rate dependence of the viscosity of whole blood and plasma. Science 133:763–764 Google Scholar
  127. 127.
    Simo J, Hughes T (1998) Computational inelasticity. Springer, New York zbMATHGoogle Scholar
  128. 128.
    Betsch P, Gruttmann F, Stein E (1996) A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comput Methods Appl Mech Eng 130:57–79 MathSciNetzbMATHGoogle Scholar
  129. 129.
    Stuparu M (2002) Human heart valves. Hyperelastic material modeling. In: Proceedings of the X-th conference on mechanical vibrations. Timisoara, Romania Google Scholar
  130. 130.
    Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201 zbMATHGoogle Scholar
  131. 131.
    Johnson C (1987) Numerical solution of partial differential equations by the finite element method. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  132. 132.
    Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech Eng 45:217–284. doi: 10.1016/0045-7825(84)90157-9 MathSciNetzbMATHGoogle Scholar
  133. 133.
    Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput Methods Appl Mech Eng 59:307–325. doi: 10.1016/0045-7825(86)90003-4 zbMATHGoogle Scholar
  134. 134.
    Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411–430. doi: 10.1016/S0045-7825(00)00211-5 zbMATHGoogle Scholar
  135. 135.
    Hughes T, Scovazzi G, Franca L (2004) Multiscale and stabilized methods. In: Stein E, de Borst R, Hughes T (eds) Encyclopedia of computational mechanics. Fluids, vol 3. Wiley, New York. Chapter 2 Google Scholar
  136. 136.
    Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387–401 zbMATHGoogle Scholar
  137. 137.
    Hughes TJR, Feijóo G, Mazzei L, Quincy JB (1998) The variational multiscale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166:3–24 zbMATHGoogle Scholar
  138. 138.
    Hughes TJR, Sangalli G (2007) Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM J Numer Anal 45:539–557 MathSciNetzbMATHGoogle Scholar
  139. 139.
    Akin JE, Tezduyar T, Ungor M, Mittal S (2003) Stabilization parameters and Smagorinsky turbulence model. J Appl Mech 70:2–9. doi: 10.1115/1.1526569 zbMATHGoogle Scholar
  140. 140.
    Akin JE, Tezduyar TE (2004) Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements. Comput Methods Appl Mech Eng 193:1909–1922. doi: 10.1016/j.cma.2003.12.050 zbMATHGoogle Scholar
  141. 141.
    Catabriga L, Coutinho ALGA, Tezduyar TE (2005) Compressible flow SUPG parameters computed from element matrices. Commun Numer Methods Eng 21:465–476. doi: 10.1002/cnm.759 MathSciNetzbMATHGoogle Scholar
  142. 142.
    Tezduyar TE, Senga M, Vicker D (2006) Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZβ shock-capturing. Comput Mech 38:469–481. doi: 10.1007/s00466-005-0025-6 zbMATHGoogle Scholar
  143. 143.
    Tezduyar TE, Sathe S (2006) Enhanced-discretization selective stabilization procedure (EDSSP). Comput Mech 38:456–468. doi: 10.1007/s00466-006-0056-7 zbMATHGoogle Scholar
  144. 144.
    Onate E, Valls A, Garcia J (2006) FIC/FEM formulation with matrix stabilizing terms for incompressible flows at low and high Reynolds numbers. Comput Mech 38:440–455 zbMATHGoogle Scholar
  145. 145.
    Corsini A, Rispoli F, Santoriello A, Tezduyar TE (2006) Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput Mech 38:356–364. doi: 10.1007/s00466-006-0045-x MathSciNetzbMATHGoogle Scholar
  146. 146.
    Catabriga L, Coutinho ALGA, Tezduyar TE (2006) Compressible flow SUPG parameters computed from degree-of-freedom submatrices. Comput Mech 38:334–343. doi: 10.1007/s00466-006-0033-1 zbMATHGoogle Scholar
  147. 147.
    Rispoli F, Corsini A, Tezduyar TE (2007) Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput Fluids 36:121–126. doi: 10.1016/j.compfluid.2005.07.004 zbMATHGoogle Scholar
  148. 148.
    Corsini A, Iossa C, Rispoli F, Tezduyar TE (2010) A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors. Comput Mech 46:159–167. doi: 10.1007/s00466-009-0441-0 MathSciNetzbMATHGoogle Scholar
  149. 149.
    Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199:828–840. doi: 10.1016/j.cma.2009.06.019 MathSciNetzbMATHGoogle Scholar
  150. 150.
    Corsini A, Rispoli F, Tezduyar TE (2011) Stabilized finite element computation of NOx emission in aero-engine combustors. Int J Numer Methods Fluids 65:254–270. doi: 10.1002/fld.2451 MathSciNetzbMATHGoogle Scholar
  151. 151.
    Shakib F, Hughes TJR, Johan Z (1991) A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations. Comput Methods Appl Mech Eng 89:141–219 MathSciNetGoogle Scholar
  152. 152.
    Lo A (1982) Nonlinear dynamic analysis of cable and membrane structure. Ph.D. thesis, Department of Civil Engineering, Oregon State University Google Scholar
  153. 153.
    Benney RJ, Stein KR, Leonard JW, Accorsi ML (1997) Current 3-D structural dynamic finite element modeling capabilities. In: Proceedings of AIAA 14th aerodynamic decelerator systems technology conference. San Francisco, California. AIAA Paper 97-1506 Google Scholar
  154. 154.
    Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869 MathSciNetzbMATHGoogle Scholar
  155. 155.
    Fujisawa T, Inaba M, Yagawa G (2003) Parallel computing of high-speed compressible flows using a node-based finite element method. Int J Numer Methods Fluids 58:481–511 MathSciNetzbMATHGoogle Scholar
  156. 156.
    Tezduyar TE (2007) Finite elements in fluids: special methods and enhanced solution techniques. Comput Fluids 36:207–223. doi: 10.1016/j.compfluid.2005.02.010 MathSciNetzbMATHGoogle Scholar
  157. 157.
    Johan Z, Mathur KK, Johnsson SL, Hughes TJR (1995) A case study in parallel computation: Viscous flow around an Onera M6 wing. Int J Numer Methods Fluids 21:877–884 zbMATHGoogle Scholar
  158. 158.
    Tezduyar TE, Liou J, Ganjoo DK (1990) Incompressible flow computations based on the vorticity-stream function and velocity-pressure formulations. Comput Struct 35:445–472. doi: 10.1016/0045-7949(90)90069-E zbMATHGoogle Scholar
  159. 159.
    Tezduyar TE, Mittal S, Shih R (1991) Time-accurate incompressible flow computations with quadrilateral velocity-pressure elements. Comput Methods Appl Mech Eng 87:363–384. doi: 10.1016/0045-7825(91)90014-W zbMATHGoogle Scholar
  160. 160.
    Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Eng Struct Dyn 5:283–292 Google Scholar
  161. 161.
    Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann Biomed Eng 158:975–987 MathSciNetGoogle Scholar
  162. 162.
    Green AE, Naghdi PM (1976) A derivation of equations for wave propagation in water of variable depth. J Fluid Mech 78:237–246 zbMATHGoogle Scholar
  163. 163.
    McPhail T, Warren J (2008) An interactive editor for deforming volumetric data. In: International Conference on Biomedical Engineering 2008, Singapore, pp 137–144 Google Scholar
  164. 164.
    Chung J, Hulbert G (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech 60:371–375 MathSciNetzbMATHGoogle Scholar
  165. 165.
    Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT (2001) The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103:1051–1056 Google Scholar
  166. 166.
    Womersley JR (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127:553–563 Google Scholar
  167. 167.
    Frank O (1899) Die Grundform des arteriellen Pulses. Z Biol 37:483–586 Google Scholar
  168. 168.
    Formaggia L, Gerbeau J-F, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191:561–582 MathSciNetzbMATHGoogle Scholar
  169. 169.
    Vignon-Clementel I, Figueroa C, Jansen K, Taylor C (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195:3776–3796 MathSciNetzbMATHGoogle Scholar
  170. 170.
    Tezduyar TE, Takizawa K, Christopher J (2009) Sequentially-coupled FSI technique. In: Kvamsdal T, Pettersen B, Bergan P, Onate E, Garcia J (eds) Marine 2009. CIMNE, Barcelona, Google Scholar
  171. 171.
    Tezduyar TE, Takizawa K, Christopher J, Moorman C, Wright S (2009) Interface projection techniques for complex FSI problems. In: Kvamsdal T, Pettersen B, Bergan P, Onate E, Garcia J (eds) Marine 2009. CIMNE, Barcelona Google Scholar
  172. 172.
    Jansen K, Whiting C, Hulbert G (1999) A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190:305–319 MathSciNetGoogle Scholar
  173. 173.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195 MathSciNetzbMATHGoogle Scholar
  174. 174.
    Zhang Y, Bazilevs Y, Goswami S, Bajaj C, Hughes TJR (2007) Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput Methods Appl Mech Eng 196:2943–2959 MathSciNetzbMATHGoogle Scholar
  175. 175.
    Zhang Y, Wang W, Liang X, Bazilevs Y, Hsu M-C, Kvamsdal T, Brekken R, Isaksen J (2009) High-fidelity tetrahedral mesh generation from medical imaging data for fluid-structure interaction analysis of cerebral aneurysms. Comput Model Eng Sci 42:131–150 Google Scholar
  176. 176.
    Fontan F, Baudet E (1971) Surgical repair of tricuspid atresia. Thorax 26:240–248 Google Scholar
  177. 177.
    Petrossian E, Reddy VM, Collins KK, Culbertson CB, MacDonald MJ, Lamberti JJ, Reinhartz O, Mainwaring RD, Francis PD, Malhotra SP, Gremmels DB, Suleman S, Hanley FL (2006) The extracardiac conduit Fontan operation using minimal approach extracorporeal circulation: early and midterm outcomes. J Thorac Cardiovasc Surg 132:1054–1063 Google Scholar
  178. 178.
    Ensley A, Ramuzat A, Healy T, Chatzimavroudis G, Lucas C, Sharma S, Pettigrew R, Yoganathan A (2000) Fluid mechanic assessment of the total cavopulmonary connection using magnetic resonance phase velocity mapping and digital particle image velocimetry. Ann Biomed Eng 28:1172–1183 Google Scholar
  179. 179.
    Khunatorn Y, Mahalingam S, DeGroff C, Shandas R (2002) Influence of connection geometry and SVC-IVC flow rate ratio on flow structures within the total cavopulmonary connection: a numerical study. J Biomech Eng 124:364–377 Google Scholar
  180. 180.
    Bove E, de Leval M, Migliavacca F, Guadagni G, Dubini G (2003) Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the Norwood procedure for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 126:1040–1047 Google Scholar
  181. 181.
    Migliavacca F, Dubini G, Bove E, de Leval M (2003) Computational fluid dynamics simulations in realistic 3-D geometries of the total cavopulmonary anastomosis: the influence of the inferior caval anastomosis. J Biomech Eng 125:805–813 Google Scholar
  182. 182.
    Marsden A, Bernstein A, Reddy V, Shadden S, Spilker R, Chan F, Taylor C, Feinstein J (2009) Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics. J Thorac Cardiovasc Surg 137:394–403 Google Scholar
  183. 183.
    Marsden A, Vignon-Clementel I, Chan F, Feinstein J, Taylor C (2007) Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Ann Biomed Eng 35:250–263 Google Scholar
  184. 184.
    de Leval MR, Dubini G, Migliavacca F, Jalali H, Camporini G, Redington A, Pietrabissa R (1996) Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavo-pulmonary connections. J Thorac Cardiovasc Surg 111:502–513 Google Scholar
  185. 185.
    Dubini G, de Leval MR, Pietrabissa R, Montevecchi FM, Fumero R (1996) A numerical fluid mechanical study of repaired congenital heart defects: application to the total cavopulmonary connection. J Biomech 29:111–121 Google Scholar
  186. 186.
    Migliavacca F, Dubini G, Pietrabissa R, de Leval MR (1997) Computational transient simulations with varying degree and shape of pulmonic stenosis in models of the bidirectional cavopulmonary anastomosis. Med Eng Phys 19:394–403 Google Scholar
  187. 187.
    Sahni O, Muller J, Jansen K, Shephard M, Taylor C (2006) Efficient anisotropic adaptive discretization of the cardiovascular system. Comput Methods Appl Mech Eng 195:5634–5655 MathSciNetzbMATHGoogle Scholar
  188. 188.
    Shachar G, Fuhrman B, Wang Y, Lucas R Jr, Lock J (1982) Rest and exercise hemodynamics after the Fontan procedure. Circulation 65:1043–1048 Google Scholar
  189. 189.
    Giardini A, Balducci A, Specchia S, Gaetano G, Bonvicini M, Picchio FM (2008) Effect of sildenafil on haemodynamic response to exercise capacity in Fontan patients. Eur Heart J 29:1681–1687 Google Scholar
  190. 190.
    Hjortdal VE, Emmertsen K, Stenbog E, Frund T, Rahbek Schmidt M, Kromann O, Sorensen K, Pedersen EM (2003) Effects of exercise and respiration on blood flow in total cavopulmonary connection: a real-time magnetic resonance flow study. Circulation 108:1227–1231 Google Scholar
  191. 191.
    Pedersen EM, Stenbog EV, Frund T, Houlind K, Kromann O, Sorensen KE, Emmertsen K, Hjortdal VE (2002) Flow during exercise in the total cavopulmonary connection measured by magnetic resonance velocity mapping. Heart 87:554–558 Google Scholar
  192. 192.
    Hetzer R, Jurmann MJ, Potapov EV, Hennig E, Stiller B, Muller JH, Weng Y (2002) Heart assist systems: current status. Hertz 20:407 Google Scholar
  193. 193.
    Wootton DM, Ku DN (1999) Fluid mechanics of vascular systems, diseases, and thrombosis. Annu Rev Biomed Eng 1:299 Google Scholar
  194. 194.
    Liu SQ, Zhong L, Goldman J (2002) Control of the shape of a thrombus-neointima-like structure by blood shear stress. J Biomech Eng 124:30 Google Scholar
  195. 195.
    Kar B, Delgado RM III, Frazier OH, Gregoric I, Harting MT, Wadia Y, Myers T, Moser R, Freund J (2005) The effect of LVAD aortic outflow-graft placement on hemodynamics and flow. Texas Heart Inst J 32:294–298 Google Scholar
  196. 196.
    Gohean JR (2007) A closed-loop multi-scale model of the cardiovascular system for evaluation of ventricular devices. Master’s thesis, University of Texas, Austin, May 2007 Google Scholar
  197. 197.
    Calo V, Brasher N, Bazilevs Y, Hughes T (2008) Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow. Comput Mech 43:161–177 zbMATHGoogle Scholar
  198. 198.
    Olufsen MS (1988) Modeling of the arterial system with reference to an anesthesia simulator. Ph.D. thesis, Roskilde University, 1998 Google Scholar
  199. 199.
    Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB (1993) Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88:2235–2247 Google Scholar
  200. 200.
    Glagov S, Zarins C, Giddens DP, Ku DN (1988) Hemodynamics and atherosclerosis: insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med 112:1018–1031 Google Scholar
  201. 201.
    Shaaban AM, Duerinckx AJ (2000) Wall shear stress and early atherosclerosis: a review. Am J Roentgenol 174:1657–1665 Google Scholar
  202. 202.
    Levesque MJ, Nerem R (1985) The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng 107:341–347 Google Scholar
  203. 203.
    Levesque MJ, Liepsch D, Moravec S, Nerem R (1986) Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta. Arteriosclerosis 6:220–229 Google Scholar
  204. 204.
    Okano M, Yoshida Y (1994) Junction complexes of endothelial cells in atherosclerosis-prone and atherosclerosis-resistant regions on flow dividers of brachiocephalic bifurcations in the rabbit aorta. Biorheology 31:155–161 Google Scholar

Copyright information

© CIMNE, Barcelona, Spain 2012

Authors and Affiliations

  • Kenji Takizawa
    • 1
  • Yuri Bazilevs
    • 2
  • Tayfun E. Tezduyar
    • 3
  1. 1.Department of Modern Mechanical Engineering and Waseda Institute for Advanced StudyWaseda UniversityShinjuku-kuJapan
  2. 2.Structural EngineeringUniversity of California San DiegoLa JollaUSA
  3. 3.Mechanical EngineeringRice University—MS 321HoustonUSA

Personalised recommendations