Computational Methods for Parachute Fluid–Structure Interactions

Article

Abstract

The computational challenges posed by fluid–structure interaction (FSI) modeling of parachutes include the lightness of the parachute canopy compared to the air masses involved in the parachute dynamics, in the case of “ringsail” parachutes the geometric complexities created by the construction of the canopy from “rings” and “sails” with hundreds of ring “gaps” and sail “slits”, and in the case of parachute clusters the contact between the parachutes. The Team for Advanced Flow Simulation and Modeling (Open image in new window) has successfully addressed these computational challenges with the Stabilized Space–Time FSI (SSTFSI) technique, which was developed and improved over the years by the Open image in new window and serves as the core numerical technology, and a number of special techniques developed in conjunction with the SSTFSI technique. The quasi-direct and direct coupling techniques developed by the Open image in new window, which are applicable to cases with incompatible fluid and structure meshes at the interface, yield more robust algorithms for FSI computations where the structure is light and therefore more sensitive to the variations in the fluid dynamics forces. The special technique used in dealing with the geometric complexities of the rings and sails is the Homogenized Modeling of Geometric Porosity, which was developed and improved in recent years by the Open image in new window. The Surface-Edge-Node Contact Tracking (SENCT) technique was introduced by the Open image in new window as a contact algorithm where the objective is to prevent the structural surfaces from coming closer than a minimum distance in an FSI computation. The recently-introduced conservative version of the SENCT technique is more robust and is now an essential technology in the parachute cluster computations carried out by the Open image in new window. We provide an overview of the core and special techniques developed by the Open image in new window, present single-parachute FSI computations carried out for design-parameter studies, and report FSI computation and dynamical analysis of two-parachute clusters.

References

  1. 1.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349 MathSciNetMATHGoogle Scholar
  2. 2.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26:27–36. doi:10.1109/2.237441 Google Scholar
  3. 3.
    Behr M, Johnson A, Kennedy J, Mittal S, Tezduyar T (1993) Computation of incompressible flows with implicit finite element implementations on the Connection Machine. Comput Methods Appl Mech Eng 108:99–118. doi:10.1016/0045-7825(93)90155-Q MathSciNetMATHGoogle Scholar
  4. 4.
    Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119:157–177. doi:10.1016/0045-7825(94)00082-4 MATHGoogle Scholar
  5. 5.
    Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid-body interactions. Comput Methods Appl Mech Eng 112:253–282. doi:10.1016/0045-7825(94)90029-9 MathSciNetMATHGoogle Scholar
  6. 6.
    Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows—fluid-structure interactions. Int J Numer Methods Fluids 21:933–953. doi:10.1002/fld.1650211011 MATHGoogle Scholar
  7. 7.
    Aliabadi SK, Tezduyar TE (1995) Parallel fluid dynamics computations in aerospace applications. Int J Numer Methods Fluids 21:783–805. doi:10.1002/fld.1650211003 MathSciNetMATHGoogle Scholar
  8. 8.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18:397–412. doi:10.1007/BF00350249 MATHGoogle Scholar
  9. 9.
    Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24:1321–1340. doi:10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.3.CO;2-C MATHGoogle Scholar
  10. 10.
    Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23:130–143. doi:10.1007/s004660050393 MATHGoogle Scholar
  11. 11.
    Behr M, Tezduyar T (1999) The Shear-Slip Mesh Update Method. Comput Methods Appl Mech Eng 174:261–274. doi:10.1016/S0045-7825(98)00299-0 MATHGoogle Scholar
  12. 12.
    Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190:321–332. doi:10.1016/S0045-7825(00)00204-8 MATHGoogle Scholar
  13. 13.
    Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid–structure interactions: 3-D Computation. Comput Methods Appl Mech Eng 190:373–386. doi:10.1016/S0045-7825(00)00208-5 MATHGoogle Scholar
  14. 14.
    Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130. doi:10.1007/BF02897870 MATHGoogle Scholar
  15. 15.
    Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191:717–726. doi:10.1016/S0045-7825(01)00311-5 MATHGoogle Scholar
  16. 16.
    Stein K, Benney R, Tezduyar T, Potvin J (2001) Fluid–structure interactions of a cross parachute: Numerical simulation. Comput Methods Appl Mech Eng 191:673–687. doi:10.1016/S0045-7825(01)00312-7 MATHGoogle Scholar
  17. 17.
    Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190:3009–3019 MATHGoogle Scholar
  18. 18.
    Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput Methods Appl Mech Eng 190:3189–3200. doi:10.1016/S0045-7825(00)00388-1 MATHGoogle Scholar
  19. 19.
    Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70:58–63. doi:10.1115/1.1530635 MATHGoogle Scholar
  20. 20.
    Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193:2019–2032. doi:10.1016/j.cma.2003.12.046 MATHGoogle Scholar
  21. 21.
    van Brummelen EH, de Borst R (2005) On the nonnormality of subiteration for a fluid-structure interaction problem. SIAM J Sci Comput 27:599–621 MathSciNetMATHGoogle Scholar
  22. 22.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195:2002–2027. doi:10.1016/j.cma.2004.09.014 MathSciNetMATHGoogle Scholar
  23. 23.
    Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195:5743–5753. doi:10.1016/j.cma.2005.08.023 MathSciNetMATHGoogle Scholar
  24. 24.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the Deforming-Spatial-Domain/Stabilized Space–Time formulation. Comput Methods Appl Mech Eng 195:1885–1895. doi:10.1016/j.cma.2005.05.050 MathSciNetMATHGoogle Scholar
  25. 25.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38:482–490. doi:10.1007/s00466-006-0065-6 MATHGoogle Scholar
  26. 26.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322 MathSciNetMATHGoogle Scholar
  27. 27.
    Tezduyar TE (2007) Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces. Comput Fluids 36:191–206. doi:10.1016/j.compfluid.2005.02.011 MathSciNetMATHGoogle Scholar
  28. 28.
    Brenk M, Bungartz H-J, Mehl M, Neckel T (2006) Fluid–structure interaction on Cartesian grids: Flow simulation and coupling environment. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 233–269 Google Scholar
  29. 29.
    Lohner R, Cebral JR, Yang C, Baum JD, Mestreau EL, Soto O (2006) Extending the range of applicability of the loose coupling approach for FSI simulations. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 82–100 Google Scholar
  30. 30.
    Bletzinger K-U, Wuchner R, Kupzok A (2006) Algorithmic treatment of shells and free form-membranes in FSI. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 336–355 Google Scholar
  31. 31.
    Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics. Int J Numer Methods Fluids 54:901–922. doi:10.1002/fld.1443 MathSciNetMATHGoogle Scholar
  32. 32.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36:160–168. doi:10.1016/j.compfluid.2005.07.014 MATHGoogle Scholar
  33. 33.
    Sawada T, Hisada T (2007) Fluid–structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method. Comput Fluids 36:136–146 MATHGoogle Scholar
  34. 34.
    Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: Solution techniques. Int J Numer Methods Fluids 54:855–900. doi:10.1002/fld.1430 MathSciNetMATHGoogle Scholar
  35. 35.
    Takizawa K, Yabe T, Tsugawa Y, Tezduyar TE, Mizoe H (2007) Computation of free–surface flows and fluid–object interactions with the CIP method based on adaptive meshless Soroban grids. Comput Mech 40:167–183. doi:10.1007/s00466-006-0093-2 MATHGoogle Scholar
  36. 36.
    Takizawa K, Tanizawa K, Yabe T, Tezduyar TE (2007) Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids. Int J Numer Methods Fluids 54:1011–1019. doi:10.1002/fld.1466 MATHGoogle Scholar
  37. 37.
    Yabe T, Takizawa K, Tezduyar TE, Im H-N (2007) Computation of fluid–solid and fluid–fluid interfaces with the CIP method based on adaptive Soroban grids—an overview. Int J Numer Methods Fluids 54:841–853. doi:10.1002/fld.1473 MathSciNetMATHGoogle Scholar
  38. 38.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54:995–1009. doi:10.1002/fld.1497 MathSciNetMATHGoogle Scholar
  39. 39.
    Manguoglu M, Sameh AH, Tezduyar TE, Sathe S (2008) A nested iterative scheme for computation of incompressible flows in long domains. Comput Mech 43:73–80. doi:10.1007/s00466-008-0276-0 MathSciNetMATHGoogle Scholar
  40. 40.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43:39–49. doi:10.1007/s00466-008-0261-7 MATHGoogle Scholar
  41. 41.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43:133–142. doi:10.1007/s00466-008-0260-8 MATHGoogle Scholar
  42. 42.
    Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Methods Fluids 57:601–629. doi:10.1002/fld.1633 MathSciNetMATHGoogle Scholar
  43. 43.
    Sathe S, Tezduyar TE (2008) Modeling of fluid–structure interactions with the space–time finite elements: contact problems. Comput Mech 43:51–60. doi:10.1007/s00466-008-0299-6 MathSciNetMATHGoogle Scholar
  44. 44.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43:151–159. doi:10.1007/s00466-008-0325-8 MATHGoogle Scholar
  45. 45.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37 MathSciNetMATHGoogle Scholar
  46. 46.
    Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39:3172–3178 Google Scholar
  47. 47.
    Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Comput Mech 43:81–90 MATHGoogle Scholar
  48. 48.
    Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43:143–150 MathSciNetMATHGoogle Scholar
  49. 49.
    Heil M, Hazel AL, Boyle J (2008) Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches. Comput Mech 43:91–101 MATHGoogle Scholar
  50. 50.
    Sternel DC, Schaefer M, Heck M, Yigit S (2008) Efficiency and accuracy of fluid–structure interaction simulations using an implicit partitioned approach. Comput Mech 43:103–113 MATHGoogle Scholar
  51. 51.
    Mehl M, Brenk M, Bungartz H-J, Daubner K, Muntean IL, Neckel T (2008) An Eulerian approach for partitioned fluid–structure simulations on Cartesian grids. Comput Mech 43:115–124 MATHGoogle Scholar
  52. 52.
    Idelsohn SR, Marti J, Souto-Iglesias A, Onate E (2008) Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM. Comput Mech 43:125–132 MATHGoogle Scholar
  53. 53.
    Idelsohn SR, Marti J, Limache A, Onate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid–structure interaction problems via the PFEM. Comput Methods Appl Mech Eng 197:1762–1776 MathSciNetMATHGoogle Scholar
  54. 54.
    Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198:3524–3533. doi:10.1016/j.cma.2008.05.024 MathSciNetMATHGoogle Scholar
  55. 55.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng 198:3613–3621. doi:10.1016/j.cma.2008.08.020 MathSciNetMATHGoogle Scholar
  56. 56.
    Manguoglu M, Sameh AH, Saied F, Tezduyar TE, Sathe S (2009) Preconditioning techniques for nonsymmetric linear systems in computation of incompressible flows. J Appl Mech 76:021204. doi:10.1115/1.3059576 Google Scholar
  57. 57.
    Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550 MathSciNetMATHGoogle Scholar
  58. 58.
    Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77–89 MathSciNetMATHGoogle Scholar
  59. 59.
    Idelsohn SR, Pin FD, Rossi R, Onate E (2009) Fluid-structure interaction problems with strong added-mass effect. Int J Numer Methods Eng 80:1261–1294 MATHGoogle Scholar
  60. 60.
    Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26:101–116. doi:10.1002/cnm.1241 MATHGoogle Scholar
  61. 61.
    Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46:31–41. doi:10.1007/s00466-009-0425-0 MathSciNetMATHGoogle Scholar
  62. 62.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46:17–29. doi:10.1007/s00466-009-0423-2 MathSciNetMATHGoogle Scholar
  63. 63.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26:336–347. doi:10.1002/cnm.1289 MathSciNetMATHGoogle Scholar
  64. 64.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46:83–89. doi:10.1007/s00466-009-0426-z MATHGoogle Scholar
  65. 65.
    Mayer UM, Popp A, Gerstenberger A, Wall WA (2010) 3D fluid–structure–contact interaction based on a combined XFEM FSI and dual mortar contact approach. Comput Mech 46:53–67 MathSciNetMATHGoogle Scholar
  66. 66.
    Sugiyama K, Ii S, Takeuchi S, Takagi S, Matsumoto Y (2010) Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow. Comput Mech 46:147–157 MathSciNetMATHGoogle Scholar
  67. 67.
    Calderer R, Masud A (2010) A multiscale stabilized ALE formulation for incompressible flows with moving boundaries. Comput Mech 46:185–197 MathSciNetMATHGoogle Scholar
  68. 68.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms. Comput Mech 46:43–52. doi:10.1007/s00466-009-0439-7 MATHGoogle Scholar
  69. 69.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46:3–16 MathSciNetMATHGoogle Scholar
  70. 70.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64:1201–1218. doi:10.1002/fld.2221 MATHGoogle Scholar
  71. 71.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498 Google Scholar
  72. 72.
    Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416 MATHGoogle Scholar
  73. 73.
    Ryzhakov PB, Rossi R, Idelsohn SR, Onate E (2010) A monolithic Lagrangian approach for fluid–structure interaction problems. Comput Mech 46:883–899 MathSciNetMATHGoogle Scholar
  74. 74.
    Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics. Int J Numer Methods Fluids 65:207–235. doi:10.1002/fld.2400 MATHGoogle Scholar
  75. 75.
    Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236–253 MATHGoogle Scholar
  76. 76.
    Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Methods Fluids 65:271–285. doi:10.1002/fld.2348 MATHGoogle Scholar
  77. 77.
    Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65:308–323. doi:10.1002/fld.2360 MATHGoogle Scholar
  78. 78.
    Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65:286–307. doi:10.1002/fld.2359 MATHGoogle Scholar
  79. 79.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. Int J Numer Methods Fluids 65:135–149. doi:10.1002/fld.2415 MathSciNetMATHGoogle Scholar
  80. 80.
    Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng 27:1665–1710. doi:10.1002/cnm.1433 Google Scholar
  81. 81.
    Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48:247–267. doi:10.1007/s00466-011-0571-z MathSciNetMATHGoogle Scholar
  82. 82.
    Takizawa K, Spielman T, Tezduyar TE (2011) Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48:345–364. doi:10.1007/s00466-011-0590-9 MATHGoogle Scholar
  83. 83.
    Takizawa K, Spielman T, Moorman C, Tezduyar TE (2012) Fluid–structure interaction modeling of spacecraft parachutes for simulation-based design. J Appl Mech 79:010907 Google Scholar
  84. 84.
    Takizawa K, Brummer T, Tezduyar TE, Chen PR (2012) A comparative study based on patient-specific fluid–structure interaction modeling of cerebral aneurysms. J Appl Mech 79:010908 Google Scholar
  85. 85.
    Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79:010903 Google Scholar
  86. 86.
    Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48:647–657. doi:10.1007/s00466-011-0614-5 Google Scholar
  87. 87.
    Sawada T, Tezuka A (2011) LLM and X-FEM based interface modeling of fluid–thin structure interactions on a non-interface-fitted mesh. Comput Mech. doi:10.1007/s00466-011-0600-y
  88. 88.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) A parallel sparse algorithm targeting arterial fluid mechanics computations. Comput Mech 48:377–384. doi:10.1007/s00466-011-0619-0 MATHGoogle Scholar
  89. 89.
    Onate E, Celigueta MA, Idelsohn SR, Salazar F, Suarez B (2011) Possibilities of the particle finite element method for fluid–soil–structure interaction problems. Comput Mech. doi:10.1007/s00466-011-0617-2
  90. 90.
    Takase S, Kashiyama K, Tanaka S, Tezduyar TE (2011) Space–time SUPG finite element computation of shallow-water flows with moving shorelines. Comput Mech 48:293–306. doi:10.1007/s00466-011-0618-1 MathSciNetMATHGoogle Scholar
  91. 91.
    Nagaoka S, Nakabayashi Y, Yagawa G, Kim YJ (2011) Accurate fluid–structure interaction computations using elements without mid-side nodes. Comput Mech. doi:10.1007/s00466-011-0620-7 MathSciNetGoogle Scholar
  92. 92.
    Stein KR, Benney RJ, Kalro V, Johnson AA, Tezduyar TE (1997) Parallel computation of parachute fluid–structure interactions. In: Proceedings of AIAA 14th aerodynamic decelerator systems technology conference, San Francisco, California. AIAA Paper 97-1505 Google Scholar
  93. 93.
    Stein KR, Benney RJ, Tezduyar TE, Leonard JW, Accorsi ML (2001) Fluid–structure interactions of a round parachute: modeling and simulation techniques. J Aircr 38:800–808. doi:10.2514/2.2864 Google Scholar
  94. 94.
    Stein K, Tezduyar T, Kumar V, Sathe S, Benney R, Thornburg E, Kyle C, Nonoshita T (2003) Aerodynamic interactions between parachute canopies. J Appl Mech 70:50–57. doi:10.1115/1.1530634 MATHGoogle Scholar
  95. 95.
    Stein K, Tezduyar T, Benney R (2003) Computational methods for modeling parachute systems. Comput Sci Eng 5:39–46. doi:10.1109/MCISE.2003.1166551 Google Scholar
  96. 96.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44. doi:10.1016/S0065-2156(08)70153-4 MathSciNetMATHGoogle Scholar
  97. 97.
    Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351. doi:10.1016/0045-7825(92)90059-S MathSciNetMATHGoogle Scholar
  98. 98.
    Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353–371. doi:10.1016/0045-7825(92)90060-W MathSciNetMATHGoogle Scholar
  99. 99.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575. doi:10.1002/fld.505 MathSciNetMATHGoogle Scholar
  100. 100.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259 MathSciNetMATHGoogle Scholar
  101. 101.
    Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95:221–242. doi:10.1016/0045-7825(92)90141-6 MATHGoogle Scholar
  102. 102.
    Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods—space–time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis. PVP, vol 246. ASME, New York, pp 7–24. AMD, vol 143 Google Scholar
  103. 103.
    Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94. doi:10.1016/0045-7825(94)00077-8 MATHGoogle Scholar
  104. 104.
    Tezduyar TE (2004) Finite element methods for fluid dynamics with moving boundaries and interfaces. In: Stein E, Borst RD, Hughes TJR (eds) Fluids. Encyclopedia of computational mechanics, volume 3. Wiley, New York. Chap 17 Google Scholar
  105. 105.
    Tezduyar TE (2007) Finite elements in fluids: Special methods and enhanced solution techniques. Comput Fluids 36:207–223. doi:10.1016/j.compfluid.2005.02.010 MathSciNetMATHGoogle Scholar
  106. 106.
    Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411–430. doi:10.1016/S0045-7825(00)00211-5 MATHGoogle Scholar
  107. 107.
    Akin JE, Tezduyar T, Ungor M, Mittal S (2003) Stabilization parameters and Smagorinsky turbulence model. J Appl Mech 70:2–9. doi:10.1115/1.1526569 MATHGoogle Scholar
  108. 108.
    Akin JE, Tezduyar TE (2004) Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements. Comput Methods Appl Mech Eng 193:1909–1922. doi:10.1016/j.cma.2003.12.050 MATHGoogle Scholar
  109. 109.
    Catabriga L, Coutinho ALGA, Tezduyar TE (2005) Compressible flow SUPG parameters computed from element matrices. Commun Numer Methods Eng 21:465–476. doi:10.1002/cnm.759 MathSciNetMATHGoogle Scholar
  110. 110.
    Tezduyar TE, Senga M, Vicker D (2006) Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZβ shock-capturing. Comput Mech 38:469–481. doi:10.1007/s00466-005-0025-6 MATHGoogle Scholar
  111. 111.
    Tezduyar TE, Sathe S (2006) Enhanced-discretization selective stabilization procedure (EDSSP). Comput Mech 38:456–468. doi:10.1007/s00466-006-0056-7 MATHGoogle Scholar
  112. 112.
    Onate E, Valls A, Garcia J (2006) FIC/FEM formulation with matrix stabilizing terms for incompressible flows at low and high Reynolds numbers. Comput Mech 38:440–455 MATHGoogle Scholar
  113. 113.
    Corsini A, Rispoli F, Santoriello A, Tezduyar TE (2006) Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput Mech 38:356–364. doi:10.1007/s00466-006-0045-x MathSciNetMATHGoogle Scholar
  114. 114.
    Catabriga L, Coutinho ALGA, Tezduyar TE (2006) Compressible flow SUPG parameters computed from degree-of-freedom submatrices. Comput Mech 38:334–343. doi:10.1007/s00466-006-0033-1 MATHGoogle Scholar
  115. 115.
    Rispoli F, Corsini A, Tezduyar TE (2007) Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput Fluids 36:121–126. doi:10.1016/j.compfluid.2005.07.004 MATHGoogle Scholar
  116. 116.
    Corsini A, Iossa C, Rispoli F, Tezduyar TE (2010) A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors. Comput Mech 46:159–167. doi:10.1007/s00466-009-0441-0 MathSciNetMATHGoogle Scholar
  117. 117.
    Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199:828–840. doi:10.1016/j.cma.2009.06.019 MathSciNetMATHGoogle Scholar
  118. 118.
    Corsini A, Rispoli F, Tezduyar TE (2011) Stabilized finite element computation of NOx emission in aero-engine combustors. Int J Numer Methods Fluids 65:254–270. doi:10.1002/fld.2451 MathSciNetMATHGoogle Scholar
  119. 119.
    Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput Methods Appl Mech Eng 59:307–325. doi:10.1016/0045-7825(86)90003-4 MATHGoogle Scholar
  120. 120.
    Shakib F, Hughes TJR, Johan Z (1991) A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations. Comput Methods Appl Mech Eng 89:141–219 MathSciNetGoogle Scholar
  121. 121.
    Lo A (1982) Nonlinear dynamic analysis of cable and membrane structure. PhD thesis, Department of Civil Engineering, Oregon State University Google Scholar
  122. 122.
    Benney RJ, Stein KR, Leonard JW, Accorsi ML (1997) Current 3-D structural dynamic finite element modeling capabilities. In: Proceedings of AIAA 14th aerodynamic decelerator systems technology conference, San Francisco, California. AIAA Paper 97-1506 Google Scholar
  123. 123.
    Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Eng Struct Dyn 5:283–292 Google Scholar
  124. 124.
    Saad Y, Schultz M (1986) GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869 MathSciNetMATHGoogle Scholar
  125. 125.
    Johnson AA, Tezduyar TE (1996) Simulation of multiple spheres falling in a liquid-filled tube. Comput Methods Appl Mech Eng 134:351–373. doi:10.1016/0045-7825(95)00988-4 MathSciNetMATHGoogle Scholar
  126. 126.
    Fujisawa T, Inaba M, Yagawa G (2003) Parallel computing of high-speed compressible flows using a node-based finite element method. Int J Numer Methods Fluids 58:481–511 MathSciNetMATHGoogle Scholar
  127. 127.
    Johan Z, Mathur KK, Johnsson SL, Hughes TJR (1995) A case study in parallel computation: Viscous flow around an Onera M6 wing. Int J Numer Methods Fluids 21:877–884 MATHGoogle Scholar
  128. 128.
    Behr M, Tezduyar TE (1994) Finite element solution strategies for large-scale flow simulations. Comput Methods Appl Mech Eng 112:3–24. doi:10.1016/0045-7825(94)90016-7 MathSciNetMATHGoogle Scholar
  129. 129.
    Kennedy JG, Behr M, Kalro V, Tezduyar TE (1994) Implementation of implicit finite element methods for incompressible flows on the CM-5. Comput Methods Appl Mech Eng 119:95–111. doi:10.1016/0045-7825(94)00078-6 MATHGoogle Scholar
  130. 130.
    Johnson AA, Tezduyar TE (1997) 3D simulation of fluid-particle interactions with the number of particles reaching 100. Comput Methods Appl Mech Eng 145:301–321. doi:10.1016/S0045-7825(96)01223-6 MATHGoogle Scholar
  131. 131.
    Tezduyar TE (1999) CFD methods for three-dimensional computation of complex flow problems. J Wind Eng Ind Aerodyn 81:97–116. doi:10.1016/S0167-6105(99)00011-2 Google Scholar
  132. 132.
    Tezduyar T, Osawa Y (1999) Methods for parallel computation of complex flow problems. Parallel Comput 25:2039–2066. doi:10.1016/S0167-8191(99)00080-0 MathSciNetGoogle Scholar
  133. 133.
    Hoerner SF (1993) Fluid dynamic drag. Hoerner Fluid Dynamics, Bakersfield Google Scholar
  134. 134.
    Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20:359–392 MathSciNetGoogle Scholar
  135. 135.
    Moorman CJ (2010) Fluid–structure interaction modeling of the Orion spacecraft parachutes. PhD thesis, Rice University Google Scholar

Copyright information

© CIMNE, Barcelona, Spain 2012

Authors and Affiliations

  1. 1.Department of Modern Mechanical Engineering and Waseda Institute for Advanced StudyWaseda UniversityTokyoJapan
  2. 2.Mechanical EngineeringRice University, MS 321HoustonUSA

Personalised recommendations