An Overview on Numerical Analyses of Nematic Liquid Crystal Flows

  • S. Badia
  • F. Guillén-Gónzalez
  • J. V. Gutiérrez-Santacreu
Article

Abstract

The purpose of this work is to provide an overview of the most recent numerical developments in the field of nematic liquid crystals. The Ericksen-Leslie equations govern the motion of a nematic liquid crystal. This system, in its simplest form, consists of the Navier-Stokes equations coupled with an extra anisotropic stress tensor, which represents the effect of the nematic liquid crystal on the fluid, and a convective harmonic map equation. The sphere constraint must be enforced almost everywhere in order to obtain an energy estimate. Since an almost everywhere satisfaction of this restriction is not appropriate at a numerical level, two alternative approaches have been introduced: a penalty method and a saddle-point method. These approaches are suitable for their numerical approximation by finite elements, since a discrete version of the restriction is enough to prove the desired energy estimate.

The Ginzburg-Landau penalty function is usually used to enforce the sphere constraint. Finite element methods of mixed type will play an important role when designing numerical approximations for the penalty method in order to preserve the intrinsic energy estimate.

The inf-sup condition that makes the saddle-point method well-posed is not clear yet. The only inf-sup condition for the Lagrange multiplier is obtained in the dual space of H1(Ω). But such an inf-sup condition requires more regularity for the director vector than the one provided by the energy estimate. Herein, we will present an alternative inf-sup condition whose proof for its discrete counterpart with finite elements is still open.

References

  1. 1.
    Adams RA (1975) Sobolev spaces. Academic Press, New York MATHGoogle Scholar
  2. 2.
    Alouges F (1997) A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J Numer Anal 34(5):1708–1726 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Azérad P, Guillén-González F (2001) Mathematical justification of the hidrostatic approximation in the primitive equations of geophysical fluid dynamics. SIAM J Math Anal 33(4):847–859 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Badia S, Codina R (2009) On a multiscale approach to the transient Stokes problem: dynamic subscales and anisotropic space-time discretization. Appl Math Comput 207:415–433 MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Badia S, Guillén-González F, Gutiérrez-Santacreu JV (2011) Finite element approximation of nematic liquid crystal flows using a saddle-point structure. J Comput Phys 230(4):1686–1706 MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bartels S (2005) Stability and convergence of finite-element approximation schemes for harmonic maps. SIAM J Numer Anal 43(1):220–238 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bartels S, Prohl A (2007) Constraint preserving implicit finite element discretization of harmonic map heat flow into spheres. Math Comput 76:1847–1859 MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Becker R, Feng X, Prohl A (2008) Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow. SIAM J Numer Anal 46(4):1704–1731 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Computational mathematics, vol 15. Springer, Berlin MATHGoogle Scholar
  10. 10.
    Chen YM (1989) The weak solutions to the evolution problems of harmonic maps. Math Z 201(1):69–74 MathSciNetMATHGoogle Scholar
  11. 11.
    Cuvelie C, Segal A, van Steenhoven A (1986) Finite element methods and Navier-Stokes equations. Reidel, Dordrecht Google Scholar
  12. 12.
    Dauge M (1989) Stationary Stokes and Navier-Stokes systems on two or three-dimensional domains with corners. SIAM J Math Anal 20(1):74–97 MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Dauge M (1989) Problèmes mixtes pour le laplacien dans des domaines polyédraux courbes. (French. English summary). C R Acad Sci Paris Sér I Math 309(8):553–558 MathSciNetMATHGoogle Scholar
  14. 14.
    Dauge M (1992) Neumann and mixed problems on curvilinear polyhedra. Integral Equ Oper Theory 15, 227–261 MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Douglas JJ, Dupont T, Wahlbin L (1974/75) The stability in L q of the L 2-projection into finite element function spaces. Numer Math 23:193–197 MathSciNetCrossRefGoogle Scholar
  16. 16.
    de Gennes PG (1974) The physics of liquid crystals. Oxford University Press, London Google Scholar
  17. 17.
    de Gennes PG, Prost J (1995) The physics of liquid crystals. Clarendon Press, Oxford Google Scholar
  18. 18.
    Ericksen J (1961) Conservation laws for liquid crystals. Trans Soc Rheol 5:22–34 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ericksen J (1987) Continuum theory of nematic liquid crystals. Res Mech 21, 381–392 MathSciNetGoogle Scholar
  20. 20.
    Ern A, Guermond JL (2004) Theory and practice of finite elements. Springer, Berlin MATHGoogle Scholar
  21. 21.
    Frank FC (1958) On the theory of liquid crystals. Discuss Faraday Soc 25:19–28 CrossRefGoogle Scholar
  22. 22.
    Feng X, Prohl A (2004) Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math Comput 73(246):541–567 MathSciNetMATHGoogle Scholar
  23. 23.
    Girault V, Guillén-González F (2011) Mixed formulation, approximation and decoupling algorithm for a nematic liquid crystals model. Math Comput 80:781–819 CrossRefMATHGoogle Scholar
  24. 24.
    Girault V, Lions JL (2001) Two-grid finite-element schemes for the transient Navier-Stokes problem. Modél Math Anal Numér 35:945–980 MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Girault V, Nochetto N, Scott R (2004) Estimates of the finite element Stokes projection in W 1,∞. C R Math Acad Sci Paris 338(12):957–996 MathSciNetMATHGoogle Scholar
  26. 26.
    Girault V, Raviart PA (1986) Finite element methods for Navier-Stokes equations: theory and algorithms. Springer, Berlin MATHGoogle Scholar
  27. 27.
    Guillén-González F, Gutiérrez-Santacreu JV (2008) Unconditional stability and convergence of a fully discrete scheme for 2D viscous fluids models with mass diffusion. Math Comput 77(63):1495–1524 CrossRefMATHGoogle Scholar
  28. 28.
    Guillén-González F, Gutiérrez-Santacreu JV (2008) Conditional stability and convergence of a fully discrete scheme for 3D Navier-Stokes equations with mass diffusion. SIAM J Numer Anal 46(5):2276–2308 MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Guillén-González F, Gutiérrez-Santacreu JV (2011) A linear mixed finite element scheme for a nematic Ericksen-Leslie liquid crystal model. Submitted Google Scholar
  30. 30.
    Grisvard P (1985) Elliptic problems in nonsmooth domains. Pitman monographs and studies in mathematics, vol 24. Pitman, Boston MATHGoogle Scholar
  31. 31.
    Heywood JG, Rannacher R (1982) Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J Numer Anal 19(2), 275–311 MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Hu Q, Tai X-C, Winther R (2009) A saddle-point approach to the computation of harmonic maps. SIAM J Numer Anal 47(2), 1500–1523 MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuŝka-Brezzi condition: a stable Petrov–Galerkin formulation for the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59:85–99 MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Kellogg RB, Osborn JE (1976) A regularity for the Stokes problem in a convex polygon. J Funct Anal 21:397–431 MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Leslie F (1979) Theory of flow phenomenum in liquid crystals. In: Brown W (ed) The theory of liquid crystals, vol 4, pp 1–81. Academic Press, New York Google Scholar
  36. 36.
    Leslie F (1968) Some constitutive equations for liquid crystals. Arch Ration Mech Anal 28:265–283 MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Lin FH (1989) Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena. Commun Pure Appl Math 42:789–814 CrossRefMATHGoogle Scholar
  38. 38.
    Lin FH, Liu C (1995) Non-parabolic dissipative systems modelling the flow of liquid crystals. Commun Pure Appl Math 48:501–537 MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Lin FH, Liu C (2000) Existence of solutions for the Ericksen-Leslie system. Arch Ration Mech Anal 154, 135–156 MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Lin P, Liu C (2006) Simulations of singularity dynamics in liquid crystal flows: A C 0 finite element approach. J Comput Phys 215:348–362 MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Lin P, Liu C, Zhang H (2007) An energy law preserving C 0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics. J Comput Phys 227(2):1411–1427 MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Lions JL (1978) On some questions in boundary value problems of mathematics physics. In: Contempory developments in continuum mechanics and partial differential equations. North-Holland math stud, vol 30, pp 283–346. North-Holland, Amsterdam Google Scholar
  43. 43.
    Lions JL, Magenes E (1972) Nonhomogeneous boundary value problems and applications, vol I. Die Grundlehren der Mathematischen Wissenschaften, vol 181. Springer, New York. Translated from the French by P Kenneth Google Scholar
  44. 44.
    Liu C, Walkington NJ (2000) Approximation of liquid crystal flows. SIAM J Numer Anal 37(3):725–741 MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Liu C, Walkington NJ (2002) Mixed methods for the approximation of liquid crystal flows. Modél Math Anal Numér 36(2):205–222 MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Liu C, Walkington NJ (2007) Convergence of numerical approximations of the incompressible Navier-Stokes equations with variable density and viscosity. SIAM J Numer Anal 45(3):1287–1304 MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Malek J, Necas J, Rokyta M, Ruzicka M (1996) Weak and measure-valued solutions to evolutionary PDEs. Chapman & Hall, New York MATHGoogle Scholar
  48. 48.
    Necas J (1967) Les Méthodes directes en théorie des équations elliptiques. Masson, Paris Google Scholar
  49. 49.
    Oseen C (1933) Theory of liquid crystals. Trans Faraday Soc 29:883–899 CrossRefGoogle Scholar
  50. 50.
    Protter M, Weinberger H (1967) Maximum principles in differential equations. Prentice-Hall, Englewood Cliffs Google Scholar
  51. 51.
    Savaré G (1998) Regularity results for elliptic equations in Lipschitz domains. J Funct Anal 152(1):176–201 MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Scott LR, Zhang S (1990) Finite element interpolation of non-smooth functions satisfying boundary conditions. Math Comput 54:483–493 MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Shatah J (1988) Weak solutions and development of singularities in SU(2) σ-model. CPAM 41, 459–469 MathSciNetMATHGoogle Scholar
  54. 54.
    Simon J (1987) Compact sets in the space L p(0,T;B). Ann Mat Pura Appl 146:65–97 MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Temam R (1984) Navier-Stokes equations. North-Holland, Amsterdam MATHGoogle Scholar
  56. 56.
    Raviart PA, Thomas JM (1977) A mixed-finite element method for second order elliptic problems. In: Mathematical aspects of the finite element method. Lecture notes in mathematics. Springer, New York Google Scholar

Copyright information

© CIMNE, Barcelona, Spain 2011

Authors and Affiliations

  • S. Badia
    • 1
  • F. Guillén-Gónzalez
    • 2
  • J. V. Gutiérrez-Santacreu
    • 3
  1. 1.International Center for Numerical Methods in Engineering (CIMNE)Universitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Dpto. E.D.A.N.University of SevillaSevillaSpain
  3. 3.Dpto. de Matemática Aplicada IUniversity of Sevilla, E.T.S.I. InformáticaSevillaSpain

Personalised recommendations