Archives of Computational Methods in Engineering

, Volume 17, Issue 4, pp 403–434 | Cite as

Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High Dimensional Stochastic Problems

  • Anthony Nouy
Original Paper


Uncertainty quantification and propagation in physical systems appear as a critical path for the improvement of the prediction of their response. Galerkin-type spectral stochastic methods provide a general framework for the numerical simulation of physical models driven by stochastic partial differential equations. The response is searched in a tensor product space, which is the product of deterministic and stochastic approximation spaces. The computation of the approximate solution requires the solution of a very high dimensional problem, whose calculation costs are generally prohibitive. Recently, a model reduction technique, named Generalized Spectral Decomposition method, has been proposed in order to reduce these costs. This method belongs to the family of Proper Generalized Decomposition methods. It takes part of the tensor product structure of the solution function space and allows the a priori construction of a quasi optimal separated representation of the solution, which has quite the same convergence properties as a posteriori Hilbert Karhunen-Loève decompositions. The associated algorithms only require the solution of a few deterministic problems and a few stochastic problems on deterministic reduced basis (algebraic stochastic equations), these problems being uncoupled. However, this method does not circumvent the “curse of dimensionality” which is associated with the dramatic increase in the dimension of stochastic approximation spaces, when dealing with high stochastic dimension. In this paper, we propose a marriage between the Generalized Spectral Decomposition algorithms and a separated representation methodology, which exploits the tensor product structure of stochastic functions spaces. An efficient algorithm is proposed for the a priori construction of separated representations of square integrable vector-valued functions defined on a high-dimensional probability space, which are the solutions of systems of stochastic algebraic equations.


Approximation Space Stochastic Partial Differential Equation Polynomial Chaos Separate Representation Galerkin Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. J Non-Newton Fluid Mech 139(3):153–176 zbMATHCrossRefGoogle Scholar
  2. 2.
    Babuška I, Tempone R, Zouraris GE (2005) Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation. Comput Methods Appl Mech Eng 194:1251–1294 zbMATHCrossRefGoogle Scholar
  3. 3.
    Babuška I, Nobile F, Tempone R (2007) A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J Numer Anal 45(3):1005–1034 zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Barron AR, Cohen A, Dahmen W, DeVore RA (2008) Approximation and learning by greedy algorithms. Ann Stat 36(1):64–94 zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Beylkin G, Mohlenkamp MJ (2005) Algorithms for numerical analysis in high dimensions. SIAM J Sci Comput 26(6):2133–2159 zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Blatman G, Sudret B (2007) Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach. C R, Méc 336(6):518–523 Google Scholar
  7. 7.
    Canuto C, Kozubek T (2007) A fictitious domain approach to the numerical solution of PDEs in stochastic domains. Numer Math 107(2):257–293 zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    De Lathauwer L, De Moor B, Vandewalle J (2000) A multilinear singular value decomposition. SIAM J Matrix Anal Appl 21(4):1253–1278 zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    de Silva V, Lim L-H (2008) Tensor rank and ill-posedness of the best low-rank approximation problem. SIAM J Matrix Anal Appl 30(3):1084–1127 CrossRefMathSciNetGoogle Scholar
  10. 10.
    Deb M, Babuška I, Oden JT (2001) Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput Methods Appl Mech Eng 190:6359–6372 zbMATHCrossRefGoogle Scholar
  11. 11.
    DeVore RA, Temlyakov VN (1996) Some remarks on greedy algorithms. Adv Comput Math 5:173–187 zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Doostan A, Iaccarino G (2009) A least-squares approximation of partial differential equations with high-dimensional random inputs. J Comput Phys 228(12):4332–4345 zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Doostan A, Iaccarino G, Etemadi N (2007) A least-squares approximation of high-dimensional uncertain systems. Technical report, Center for Turbulence Research, Annual Research Briefs Google Scholar
  14. 14.
    Webster CG, Nobile F, Tempone R (2007) A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J Numer Anal 46(5):2309–2345 MathSciNetGoogle Scholar
  15. 15.
    Falco A, Nouy A (2010) A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach. J Math Anal Appl (submitted) Google Scholar
  16. 16.
    Frauenfelder P, Schwab C, Todor RA (2005) Finite elements for elliptic problems with stochastic coefficients. Comput Methods Appl Mech Eng 194(2–5):205–228 zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Ghanem R (1999) Ingredients for a general purpose stochastic finite elements implementation. Comput Methods Appl Mech Eng 168:19–34 zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ghanem R, Spanos P (1991) Stochastic finite elements: a spectral approach. Springer, Berlin zbMATHGoogle Scholar
  19. 19.
    Ghiocel D, Ghanem R (2002) Stochastic finite-element analysis of seismic soil-structure interaction. ASCE J Eng Mech 128(1):66–77 CrossRefGoogle Scholar
  20. 20.
    Gonzalez D, Ammar A, Chinesta F, Cueto E (2009) Recent advances on the use of separated representations. Int J Numer Methods Eng. doi: 10.1002/nme.2710 Google Scholar
  21. 21.
    Keese A (2003) A review of recent developments in the numerical solution of stochastic PDEs (stochastic finite elements). Technical report 2003-6, Technical report, Institute of Scientific Computing, Tech Univ Braunschweig, Germany.
  22. 22.
    Keese A, Mathhies HG (2004) Adaptivity and sensitivity for stochastic problems. In: Spanos PD, Deodatis G (eds) Computational stochastic mechanics, vol 4. Millpress, Rotterdam, pp 311–316 Google Scholar
  23. 23.
    Kolda TG (2003) A counterexample to the possibility of an extension of the Eckart-Young low-rank approximation theorem for the orthogonal rank tensor decomposition. SIAM J Matrix Anal Appl 24(3):762–767 zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Kolda TG (2001) Orthogonal tensor decompositions. SIAM J Matrix Anal Appl 23(1):243–255 zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500 zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Ladevèze P (1999) Nonlinear computational structural mechanics—new approaches and non-incremental methods of calculation. Springer, Berlin zbMATHGoogle Scholar
  27. 27.
    Ladevèze P, Nouy A (2003) On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput Methods Appl Mech Eng 192:3061–3087 zbMATHCrossRefGoogle Scholar
  28. 28.
    Ladevèze P, Passieux JC, Néron D (2010) The LATIN multiscale computational method and the Proper Generalized Decomposition. Comput Methods Appl Mech Eng 199(21–22):1287–1296 CrossRefGoogle Scholar
  29. 29.
    Le Bris C, Lelievre T, Maday Y (2009) Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations. Constr Approx 30(3):621–651 zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Le Maître OP, Knio OM, Najm HN, Ghanem RG (2004) Uncertainty propagation using Wiener-Haar expansions. J Comput Phys 197(1):28–57 zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Le Maître OP, Najm HN, Ghanem RG, Knio OM (2004) Multi-resolution analysis of Wiener-type uncertainty propagation schemes. J Comput Phys 197(2):502–531 zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Leibovici D, El Maâche H (1997) A singular value decomposition of an element belonging to a tensor product of k separable Hilbert spaces. C R Acad Sci Paris, Sér I, Math 325(7):779–782 zbMATHGoogle Scholar
  33. 33.
    Mathelin L, Le Maître O (2007) Dual-based a posteriori error estimate for stochastic finite element methods. Commun Appl Math Comput Sci 2(1):83–116 zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Matthies HG (2008) Stochastic finite elements: Computational approaches to stochastic partial differential equations. Z Angew Math Mech 88(11):849–873 zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Matthies HG, Keese A (2005) Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput Methods Appl Mech Eng 194(12–16):1295–1331 zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Nouy A (2007) A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations. Comput Methods Appl Mech Eng 196(45–48):4521–4537 zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Nouy A (2008) Generalized spectral decomposition method for solving stochastic finite element equations: invariant subspace problem and dedicated algorithms. Comput Methods Appl Mech Eng 197:4718–4736 zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Nouy A (2009) Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations. Arch Comput Methods Eng 16(3):251–285 CrossRefMathSciNetGoogle Scholar
  39. 39.
    Nouy A (2010) A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations. Comput Methods Appl Mech Eng 199(23–24):1603–1626 CrossRefMathSciNetGoogle Scholar
  40. 40.
    Nouy A, Ladevèze P (2004) Multiscale computational strategy with time and space homogenization: a radial-type approximation technique for solving micro problems. Int J Multiscale Comput Eng 170(2):557–574 CrossRefGoogle Scholar
  41. 41.
    Nouy A, Le Maître OP (2009) Generalized spectral decomposition method for stochastic non linear problems. J Comput Phys 228(1):202–235 zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Nouy A, Clément A, Schoefs F, Moës N (2008) An extended stochastic finite element method for solving stochastic partial differential equations on random domains. Comput Methods Appl Mech Eng 197:4663–4682 zbMATHCrossRefGoogle Scholar
  43. 43.
    Soize C, Ghanem R (2004) Physical systems with random uncertainties: chaos representations with arbitrary probability measure. SIAM J Sci Comput 26(2):395–410 zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93(7):964–979 CrossRefGoogle Scholar
  45. 45.
    Todor RA, Schwab C (2007) Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J Numer Anal 27(2):232–261 zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Wan X, Karniadakis GE (2005) An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J Comput Phys 209:617–642 zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Wan X, Karniadakis GE (2006) Multi-element generalized polynomial chaos for arbitrary propability measures. SIAM J Sci Comput 28(3):901–928 zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Wan X, Karniadakis GE (2009) Error control in multi-element generalized polynomial chaos method for elliptic problems with random coefficients. Commun Comput Phys 5(2–4):793–820 MathSciNetGoogle Scholar
  49. 49.
    Xiu D (2007) Efficient collocational approach for parametric uncertainty analysis. Commun Comput Phys 2(2):293–309 zbMATHMathSciNetGoogle Scholar
  50. 50.
    Xiu D (2009) Fast numerical methods for stochastic computations: a review. Commun Comput Phys 5:242–272 MathSciNetGoogle Scholar
  51. 51.
    Xiu D, Hesthaven JS (2005) High-order collocation methods for differential equations with random inputs. SIAM J Sci Comput 27(3):1118–1139 zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Xiu D, Karniadakis GE (2002) The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644 zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Xiu D, Tartakovsky DM (2006) Numerical methods for differential equations in random domains. SIAM J Sci Comput 28(3):1167–1185 zbMATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Xiu D, Ganapathysubramanian B, Zabaras N (2007) Sparse grid collocation schemes for stochastic natural convection problems. J Comput Phys 225(1):652–685 CrossRefMathSciNetGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2010

Authors and Affiliations

  1. 1.GeM—Research Institute in Civil Engineering and Mechanics, UMR CNRS 6183Ecole Centrale NantesNantesFrance

Personalised recommendations