Archives of Computational Methods in Engineering

, Volume 15, Issue 3, pp 343–369 | Cite as

Algebraic Pressure Segregation Methods for the Incompressible Navier-Stokes Equations

Original Paper

Abstract

This work is an overview of algebraic pressure segregation methods for the incompressible Navier-Stokes equations. These methods can be understood as an inexact LU block factorization of the original system matrix. We have considered a wide set of methods: algebraic pressure correction methods, algebraic velocity correction methods and the Yosida method. Higher order schemes, based on improved factorizations, are also introduced. We have also explained the relationship between these pressure segregation methods and some widely used preconditioners, and we have introduced predictor-corrector methods, one-loop algorithms where nonlinearity and iterations towards the monolithic system are coupled.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armero F, Simo JC (1996) Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with application to MHD and Navier-Stokes equations. Comput Methods Appl Mech Eng 131:41–90 MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arrow K, Hurwicz L, Uzawa H (1958) Studies in nonlinear programming. Stanford University Press, Stanford Google Scholar
  3. 3.
    Babuška I (1971) Error bounds for the finite element method. Numer Math 16:322–333 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Badia S (2006) Stabilized pressure segregation methods and their application to fluid-structure interaction problems. PhD thesis, Escola Tècnica Superior d’Enginyers de Camins, Canals i Ports, Universitat Politècnica de Catalunya, Barcelona Google Scholar
  5. 5.
    Badia S, Codina R (2007) Convergence analysis of the FEM approximation of the first order projection method for incompressible flows with and without the inf-sup condition. Numer Math 107(4):533–557 MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Badia S, Codina R (2007) On some fluid-structure iterative algorithms using pressure segregation methods. Application to aeroelasticity. Int J Numer Methods Eng 72:46–71 CrossRefMathSciNetGoogle Scholar
  7. 7.
    Badia S, Codina R (2008) Pressure segregation methods based on a discrete pressure Poisson equation. An algebraic approach. Int J Numer Methods Fluids 56(4):351–382 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Baker GA, Dougalis VA, Karakashian A (1982) On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations. Math Comput 39:339–375 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bell JB, Colella P, Glaz HM (1989) A second-order projection method for the incompressible Navier-Stokes equations. J Comput Phys 85:257–283 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Blasco J, Codina R (2001) Space and time error estimates for a first order, pressure stabilized finite element method for the incompressible Navier-Stokes equations. Appl Numer Math 38:475–497 MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Blasco J, Codina R (2004) Error estimates for an operator splitting method for incompressible flows. Appl Numer Math 51:1–17 MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Blasco J, Codina R, Huerta A (1998) A fractional step method for the incompressible Navier-Stokes equations related to a predictor-multicorrector algorithm. Int J Numer Methods Fluids 28:1391–1419 MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Boland JM, Nicolaides RA (1983) Stability of finite elements under divergence constraints. SIAM J Numer Anal 20:722–731 MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Brenner SC, Scott LR (1994) The mathematical theory of finite element methods. Springer, Berlin MATHGoogle Scholar
  15. 15.
    Brezzi F (1974) On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers. RAIRO Anal Numer 8:129–151 MathSciNetGoogle Scholar
  16. 16.
    Brezzi F, Bathe KJ (1990) A discourse on the stability conditions for mixed finite element formulations. Comput Methods Appl Mech Eng 82:27–57 MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Brezzi F, Douglas J (1988) Stabilized mixed methods for the Stokes problem. Numer Math 53:225–235 MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, Berlin MATHGoogle Scholar
  19. 19.
    Brezzi F, Rappaz J, Raviart PA (1981) Finite dimensional approximation of nonlinear problems. Part I: Branches of non-singular solutions. Numer Math 36:1–25 CrossRefGoogle Scholar
  20. 20.
    Brezzi F, Rappaz J, Raviart PA (1981) Finite dimensional approximation of nonlinear problems. Part II: Limit points. Numer Math 37:1–28 MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Brezzi F, Rappaz J, Raviart PA (1981) Finite dimensional approximation of nonlinear problems. Part III: Simple bifurcation points. Numer Math 38:1–30 MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation. Comput Methods Appl Mech Eng 32:199–259 MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Cahouet J, Chabard J-P (1988) Some fast 3D finite element solvers for the generalized Stokes problem. Int J Numer Methods Fluids 8:869–895 CrossRefMathSciNetGoogle Scholar
  24. 24.
    Chorin AJ (1967) A numerical method for solving incompressible viscous problems. J Comput Phys 2:12–26 MATHCrossRefGoogle Scholar
  25. 25.
    Chorin AJ (1967) The numerical solution of the Navier-Stokes equations for an incompressible fluid. AEC Research and Development Report, NYO-1480-82. New York University, New York, 1967 Google Scholar
  26. 26.
    Chorin AJ (1968) Numerical solution of the Navier-Stokes equations. Math Comput 22:745–762 MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Chorin AJ (1969) On the convergence of discrete approximation to the Navier-Stokes equations. Math Comput, 23 Google Scholar
  28. 28.
    Ciarlet PG (1978) The finite element method for elliptic problems. North-Holland, Amsterdam MATHCrossRefGoogle Scholar
  29. 29.
    Clay Mathematics Institute (2000) http://www.claymath.org/millenium/. Millennium Problems
  30. 30.
    Codina R (1998) Comparison of some finite element methods for solving the dif fusion-convection-reaction equation. Comput Methods Appl Mech Eng 156:185–210 MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Codina R (2000) Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput Methods Appl Mech Eng 190:1579–1599 MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Codina R (2001) Pressure stability in fractional step finite element methods for incompressible flows. J Comput Phys 170:112–140 MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Codina R (2002) Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput Methods Appl Mech Eng 191:4295–4321 MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Codina R, Badia S (2004) Second order fractional step schemes for the incompressible Navier-Stokes equations. Inherent pressure stability and pressure stabilization. In: Proceedings of WCCM VI, Beijing, China, 2004 Google Scholar
  35. 35.
    Codina R, Badia S (2006) On some pressure segregation methods of fractional-step type for the finite element approximation of incompressible flow problems. Comput Methods Appl Mech Eng 195:2900–2918 MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Codina R, Blasco J (1997) A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation. Comput Methods Appl Mech Eng 143:373–391 MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Codina R, Blasco J (2000) Analysis of a pressure-stabilized finite element approximation of the stationary Navier-Stokes equations. Numer Math 87:59–81 MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Codina R, Blasco J (2002) Analysis of a stabilized finite element approximation of the transient convection-diffusion-reaction equation using orthogonal subscales. Comput Vis Sci 4:167–174 MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Codina R, Folch A (2004) A stabilized finite element predictor–corrector scheme for the incompressible Navier-Stokes equations using a nodal based implementation. Int J Numer Methods Fluids 44:483–503 MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Codina R, Principe J, Guasch O, Badia S (2007) Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Comput Methods Appl Mech Eng 196:24132–2430 CrossRefMathSciNetGoogle Scholar
  41. 41.
    Codina R, Soto O (2004) Approximation of the incompressible Navier-Stokes equations using orthogonal-subscale stabilization and pressure segregation on anisotropic finite element meshes. Comput Methods Appl Mech Eng 193:1403–1419 MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    de Rham G (1973) Variétés différentiables formes, courants, formes harmoniques. Hermann, Paris MATHGoogle Scholar
  43. 43.
    E W, Liu JG (1995) Projection method I: Convergence and numerical boundary layers. SIAM J Numer Anal 32:1017–1057 MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Elman HC (2002) Preconditioners for saddle point problems arising in computational fluid dynamics. Appl Numer Math 43:75–89 MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Elman HC, Howle VE, Shadid JN, Tuminaro RS (2003) A parallel block multi-level preconditioner for the 3D incompressible Navier-Stokes equations. J Comput Phys 187:504–523 MATHCrossRefGoogle Scholar
  46. 46.
    Elman HC, Silvester DJ, Wathen AJ (2002) Block preconditioners for the discrete incompressible Navier-Stokes equations. Int J Numer Methods Fluids 40:333–344 MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Ern A, Guermond JL (2004) Theory and practice of finite elements. Springer, Berlin MATHGoogle Scholar
  48. 48.
    Franca L, Stenberg R (1991) Error analysis of some Galerkin least-squares methods for the elasticity equations. SIAM J Numer Anal 28:1680–1697 MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Fried I, Malkus DS (1975) Finite element mass matrix lumping by numerical integration with no convergence rate loss. Int J Solids Struct 11:461–466 CrossRefGoogle Scholar
  50. 50.
    Gervasio P (2006) Convergence analysis of high order algebraic fractional step schemes for time-dependent Stokes equations. Technical report, Quaderno del Seminario Matematico di Brescia, 2006 Google Scholar
  51. 51.
    Gervasio P, Saleri F (2006) Algebraic fractional-step schemes for time-dependent incompressible Navier-Stokes equations. J Sci Comput 27(1–3):257–269 MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Gervasio P, Saleri F, Veneziani A (2006) Algebraic fractional-step schemes with spectral methods for the incompressible Navier-Stokes equations. J Comput Phys 214(1):347–365 MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Girault V, Raviart PA (1986) Finite element methods for Navier-Stokes equations. Springer, Berlin MATHGoogle Scholar
  54. 54.
    Gresho PM, Sani RL (2000) Incompressible flow and the finite element method. Wiley, New York MATHGoogle Scholar
  55. 55.
    Gresho PM (1990) On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part I: Theory. Int J Numer Methods Fluids 11:587–620 MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Gresho PM, Chan ST, Christon MA, Hindmarsh AC (1995) A little more on stabilized q 1 q 1 for transient viscous incompressible flow. Int J Numer Methods Fluids 21:837–856 MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Guermond JL (1994) Remarques sur les méthodes de projection pour l’approximation des équations de Navier-Stokes. Numer Math 67:465–473 MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Guermond JL, Minev P, Shen J (2006) An overview of projection methods for incompressible flows. Comput Methods Appl Mech Eng 195:6011–6045 MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Guermond JL, Quartapelle L (1998) On stability and convergence of projection methods based on pressure Poisson equation. Int J Numer Methods Fluids 26:1039–1053 MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Guermond JL, Quartapelle L (1998) On the approximation of the unsteady Navier-Stokes equations by finite element projection methods. Numer Math 80:207–238 MATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Guermond JL, Shen J (2003) A new class of truly consistent splitting schemes for incompressible flows. J Comput Phys 192:262–276 MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Guermond JL, Shen J (2003) Velocity-correction projection methods for incompressible flows. SIAM J Numer Anal 41:112–134 MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Guermond JL, Shen J (2004) On the error estimates for the rotational pressure-correction projection methods. Math Comput 73:1719–1737 MATHMathSciNetGoogle Scholar
  64. 64.
    Heywood JG, Rannacher R (1982) Finite element approximation of the nonstationary Navier-Stokes problem. I: Regularity of solutions and second-order error estimates for spatial discretization. SIAM J Numer Anal 19:275–311 MATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    Hinton E, Rock T, Zienkiewicz OC (1976) A note on mass lumping and related processes in the finite element method. Earthquake Eng Struct Dyn 4:245–249 CrossRefGoogle Scholar
  66. 66.
    Hughes TJR (1995) Multiscale phenomena: Green’s function, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized formulations. Comput Methods Appl Mech Eng 127:387–401 MATHCrossRefGoogle Scholar
  67. 67.
    Hughes TJR, Franca LP, Hulbert GM (1987) A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces. Comput Methods Appl Mech Eng 65:85–96 MATHCrossRefGoogle Scholar
  68. 68.
    Hughes TJR, Franca LP, Hulbert GM (1989) A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput Methods Appl Mech Eng 73:173–189 MATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    Hundsdorfer W, Verwer JG (2003) Numerical solution of time-dependent advection-diffusion-reaction equations. Springer, Berlin MATHGoogle Scholar
  70. 70.
    Karniadakis GE, Israeli M, Orszag SE (1991) High order splitting methods for the incompressible Navier-Stokes equations. J Comput Phys 59:414–443 CrossRefMathSciNetGoogle Scholar
  71. 71.
    Kim J, Moin P (1985) Application of the fractional step method to incompressible Navier-Stokes equations. J Comput Phys 59:308–323 MATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    Ladyzhenskaya O (1969) The mathematical theory of viscous incompressible flow. Gordon and Breach, New York MATHGoogle Scholar
  73. 73.
    Leray J (1934) Essai sur les mouvements d’un liquide visqueux emplissant l’espace. Acta Math 63:193–248 MATHCrossRefMathSciNetGoogle Scholar
  74. 74.
    Loghin D, Wathen AJ (2002) Schur complement preconditioners for the Navier-Stokes equations. Int J Numer Methods Fluids 40:403–412 MATHCrossRefMathSciNetGoogle Scholar
  75. 75.
    Oden JT, Demkowicz LZ (1996) Applied functional analysis. CRC Press, Boca Raton MATHGoogle Scholar
  76. 76.
    Orszag SA, Israeli M, Deville M (1986) Boundary conditions for incompressible flows. J Sci Comput 1:75–111 MATHCrossRefGoogle Scholar
  77. 77.
    Perot JB (1993) An analysis of the fractional step method. J Comput Phys 108:51–58 MATHCrossRefMathSciNetGoogle Scholar
  78. 78.
    Prohl A (1997) Projection and quasi-compressibility methods for solving the incompressible Navier-Stokes equations. Teubner, Stuttgart MATHGoogle Scholar
  79. 79.
    Quarteroni A, Sacchi Landriani G, Valli A (1991) Coupling viscous and inviscid Stokes equations via a domain decomposition method for finite elements. Numer Math 59:831–859 MATHCrossRefMathSciNetGoogle Scholar
  80. 80.
    Quarteroni A, Saleri F, Veneziani A (1999) Analysis of the Yosida method for the incompressible Navier-Stokes equations. J Math Pures Appl 78:473–503 MATHCrossRefMathSciNetGoogle Scholar
  81. 81.
    Quarteroni A, Saleri F, Veneziani A (2000) Factorization methods for the numerical approximation of Navier-Stokes equations. Comput Methods Appl Mech Eng 188:505–526 MATHCrossRefMathSciNetGoogle Scholar
  82. 82.
    Rannacher R (1992) On Chorin’s projection method for incompressible Navier-Stokes equations. Lecture notes in mathematics, vol 1530. Springer, Berlin, pp 167–183 CrossRefGoogle Scholar
  83. 83.
    Saad Y (1996) Iterative methods for sparse linear systems. PWS-Kent, Boston MATHGoogle Scholar
  84. 84.
    Saleri F, Veneziani A (2005) Pressure correction algebraic splitting methods for the incompressible Navier-Stokes equations. SIAM J Numer Anal 43(1):174–194 MATHCrossRefMathSciNetGoogle Scholar
  85. 85.
    Shen J (1992) On error estimates for some higher order projection and penalty-projection methods for Navier-Stokes equations. Numer Math 62:49–73 CrossRefMathSciNetGoogle Scholar
  86. 86.
    Shen J (1992) On error estimates of projection methods for Navier-Stokes equations: first order schemes. SIAM J Numer Anal 29:57–77 MATHCrossRefMathSciNetGoogle Scholar
  87. 87.
    Shen J (1993) A remark on the projection-3 method. Int J Numer Methods Fluids 16:249–253 MATHCrossRefGoogle Scholar
  88. 88.
    Shen J (1994) Remarks on the pressure error estimates for the projection methods. Numer Math 67:513–520 MATHCrossRefMathSciNetGoogle Scholar
  89. 89.
    Shen J (1996) On error estimates of the projection methods for the Navier-Stokes equations: second-order schemes. Math Comput 65:1039–1065 MATHCrossRefGoogle Scholar
  90. 90.
    Simo JC, Armero F (1994) Unconditional stability and long term behavior of transient algorithms for the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 111:111–154 MATHCrossRefMathSciNetGoogle Scholar
  91. 91.
    Strang G, Fix J (1973) An analysis of the finite element method. Prentice Hall, Englewood Cliffs MATHGoogle Scholar
  92. 92.
    Temam R (1968) Sur la stabilité et la convergence de la méthode des pas fractionaires. Ann Math Pures Appl LXXIV:191–380 CrossRefMathSciNetGoogle Scholar
  93. 93.
    Temam R (1968) Une méthode d’approximations de la solution des equations de Navier-Stokes. Bull Soc Math Fr 98:115–152 MathSciNetGoogle Scholar
  94. 94.
    Temam R (1969) Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionaires (I). Arch Ration Mech Anal 32:135–153 MATHCrossRefMathSciNetGoogle Scholar
  95. 95.
    Temam R (1969) Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionaires (II). Arch Ration Mech Anal 33:377–385 MATHCrossRefMathSciNetGoogle Scholar
  96. 96.
    Temam R (1984) Navier-Stokes equations. North-Holland, Amsterdam MATHGoogle Scholar
  97. 97.
    Temam R (1991) Remark on the pressure boundary condition for the projection method. Theor Comput Fluid Dyn 3:181–184 MATHCrossRefGoogle Scholar
  98. 98.
    Timmermans LJP, Minev PD, Van de Vosse FN (1996) An approximate projection scheme for incompressible flow using spectral elements. Int J Numer Methods Fluids 22:673–688 MATHCrossRefGoogle Scholar
  99. 99.
    Turek S (1999) Efficient solvers for incompressible flow problems. Lecture notes in computational science and engineering. Springer, Berlin MATHGoogle Scholar
  100. 100.
    van Kan J (1986) A second-order accurate pressure correction scheme for viscous incompressible flow. SIAM J Sci Stat Comput 7:870–891 MATHCrossRefGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2008

Authors and Affiliations

  1. 1.CIMNEUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations