Archives of Computational Methods in Engineering

, Volume 14, Issue 3, pp 303–341 | Cite as

Depth Averaged Modelling of Turbulent Shallow Water Flow with Wet-Dry Fronts

  • Luis CeaEmail author
  • Jerónimo Puertas
  • María-Elena Vázquez-Cendón


Depth averaged models are widely used in engineering practice in order to model environmental flows in river and coastal regions, as well as shallow flows in hydraulic structures. This paper deals with depth averaged turbulence modelling. The most important and widely used depth averaged turbulence models are reviewed and discussed, and a depth averaged algebraic stress model is presented. A finite volume model for solving the depth averaged shallow water equations coupled with several turbulence models is described with special attention to the modelling of wet-dry fronts. In order to asses the performance of the model, several flows are modelled and the numerical results are compared with experimental data.


Turbulent Kinetic Energy Turbulence Model Reynolds Stress Eddy Viscosity Shallow Water Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akanbi AA, Katopodes ND (1988) Model for flood propagation on initially dry land. J Hydraul Eng 114(7):689–706 Google Scholar
  2. 2.
    Altai S, Zhang J, Chu VH (1999) Shallow turbulent flow simulation using two-length-scale model. J Eng Mech 125(7):780–788 CrossRefGoogle Scholar
  3. 3.
    Aulisa E, Manservisi S, Scardovelli R (2003) A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows. J Comput Phys 188:611–639 zbMATHCrossRefGoogle Scholar
  4. 4.
    Babarutsi S, Chu VH (1991) A two-length-scale model for quasi-two-dimensional turbulent shear flows. In: Proc 24th congr of IAHR, vol C, Madrid, Spain, pp 51–60 Google Scholar
  5. 5.
    Babarutsi S, Chu VH (1998) Modelling transverse mixing layer in shallow open-channel flows. J Hydraul Eng 124(7):718–727 CrossRefGoogle Scholar
  6. 6.
    Babarutsi S, Nassiri M, Chu VH (1996) Computation of shallow recirculating flow dominated by friction. J Hydraul Eng 122(7):367–372 CrossRefGoogle Scholar
  7. 7.
    Bellos CV, Soulis JV, Sakkas JG (1991) Computation of two-dimensional dam break induced flows. Adv Water Res 14(1):31–41 CrossRefGoogle Scholar
  8. 8.
    Bermúdez A, Vázquez-Cendón ME (1994) Upwind methods for hyperbolic conservation laws with source terms. Comput Fluids 23(8):1049–1071 zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bermúdez A, Dervieux A, Desideri JA, Vázquez-Cendón ME (1998) Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes. Comput Methods Appl Mech Eng 155:49–72 zbMATHCrossRefGoogle Scholar
  10. 10.
    Bijvelds MDJP, Kranenbutg C, Stelling GS (1999) 3D numerical simulation of turbulent shallow-water flow in square harbor. J Hydraul Eng 125(1):26–31 CrossRefGoogle Scholar
  11. 11.
    Bonillo J (2000) Un modelo de transporte de sustancias solubles para flujos turbulentos en lámina libre. Tesis doctoral, Área de Ingeniería Hidráulica, Universidad de A Coruña Google Scholar
  12. 12.
    Booij R (1989) Depth-averaged kε modelling. In: Proc 23rd IAHR congr, Delft, The Netherlands, vol A. IAHR, pp 198–206 Google Scholar
  13. 13.
    Bradford F, Sanders BF (2002) Finite-volume model for shallow-water flooding of arbitrary topography. J Hydraul Eng 128(3):289–298 CrossRefGoogle Scholar
  14. 14.
    Brufau P (2000) Simulación bidimensional de flujos hidrodinámicos transitorios en geometrías irregulares. Tesis doctoral, Área de Mécanica de Fluidos, Universidad de Zaragoza Google Scholar
  15. 15.
    Brufau P, García-Navarro P (2000) Two-dimensional dam break flow simulation. Int J Numer Methods Fluids 33:35–57 zbMATHCrossRefGoogle Scholar
  16. 16.
    Brufau P, Vázquez-Cendón ME, García-Navarro P (2002) A numerical model for the flooding and drying of irregular domains. Int J Numer Methods Fluids 39(3):247–275 zbMATHCrossRefGoogle Scholar
  17. 17.
    Brufau P, García-Navarro P, Vázquez-Cendón ME (2004) Zero mass error using unsteady wetting-drying conditions shallow flows over dry of irregular topography. Int J Numer Methods Fluids 45:1047–1082 zbMATHCrossRefGoogle Scholar
  18. 18.
    Casulli V, Stelling GS (1998) Numerical simulation of 3D quasi-hydrostatic free-surface flows. J Hydraul Eng 124(7):678–686 CrossRefGoogle Scholar
  19. 19.
    Casulli V, Zanolli P (2002) Semi-implicit numerical modeling of nonhydrostatic free-surface flows for environmental problems. Math Comput Model 36:1131–1149 zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Cea L (2005) An unstructured finite volume model for unsteady turbulent shallow water flow with wet-dry fronts: numerical solver and experimental validation. Doctoral Thesis, Departamento de Métodos Matemáticos y de Representación, Universidad de A Coruña Google Scholar
  21. 21.
    Cea L, Ferreiro A, Vázquez-Cendón ME, Puertas J (2004) Experimental and numerical analysis of solitary waves generated by bed and boundary movements. Int J Numer Methods Fluids 46(8):793–813 zbMATHCrossRefGoogle Scholar
  22. 22.
    Cea L, French J, Vázquez-Cendón ME (2006) Numerical modelling of tidal flows in complex estuaries including turbulence: an unstructured finite volume solver and experimental validation. Int J Numer Meth Eng 67(13):1909–1932 CrossRefzbMATHGoogle Scholar
  23. 23.
    Cea L, Pena L, Puertas J, Vázquez-Cendón ME, Peña E (2007) Application of several depth-averaged turbulence models to simulate flow in vertical slot fishways. J Hydraul Eng 133(2):160–172 CrossRefGoogle Scholar
  24. 24.
    Chen D, Jirka GH (1995) Experimental study of plane turbulent wakes in a shallow water layer. Fluid Dyn Res 16:11–41 zbMATHCrossRefGoogle Scholar
  25. 25.
    Chen D, Jirka GH (1997) Absolute and convective instabilities of plane turbulent wakes in a shallow water layer. J Fluid Mech 338:157–172 zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Chen D, Jirka GH (1998) Linear instability analysis of turbulent mixing layers and jets in shallow water layers. J Hydraul Res 36(5) Google Scholar
  27. 27.
    Chu VH, Babarutsi S (1988) Confinement and bed-friction effects in shallow turbulent mixing layers. J Hydraul Eng 114(10):1257–1274 Google Scholar
  28. 28.
    Chu VH, Wu JH, Khayat RE (1991) Stability of transverse shear flows in shallow open channels. J Hydraul Eng 117(10):1370–1388 Google Scholar
  29. 29.
    Davidson L (1993) Implementation of a kε model and a Reynolds stress model into a multiblock code. Tech Rep CRS4-APPMATH-93-21, Applied Mathematics and Simulation Group CRS4, Cagliary, Italy Google Scholar
  30. 30.
    Davidson L (1997) An introduction to turbulence models. Tech Rep 97/2, Dept of Thermo and Fluid Dynamics, Chalmers University of Technology Google Scholar
  31. 31.
    Davies AM, Jones JE, Xing J (1997) Review of recent developments in tidal hydrodynamic modeling. II: Turbulence energy models. J Hydraul Eng 123(4):278–292 CrossRefGoogle Scholar
  32. 32.
    Dervieux A, Desideri JA (1992) Compressible flow solvers using unstructured grids. Rapports de Recherche 1732, INRIA Google Scholar
  33. 33.
    Ding Y, Jia Y, Wang SSY (2004) Identification of Manning’s roughness coefficients in shallow water flows. J Hydraul Eng 130(6):501–510 CrossRefGoogle Scholar
  34. 34.
    Dodd N (1998) Numerical model of wave run-up, overtopping, and regeneration. J Waterw, Port, Coastal, Ocean Eng 124(2):73–81 CrossRefGoogle Scholar
  35. 35.
    Dracos T, Giger M, Jirka GH (1992) Plane turbulent jets in a bounded fluid layer. J Fluid Mech 241:587–614 CrossRefGoogle Scholar
  36. 36.
    Duan JG (2004) Simulation of flow and mass dispersion in meandering channels. J Hydraul Eng 130(10):964–976 CrossRefGoogle Scholar
  37. 37.
    Durbin P (1996) On the kε stagnation point anomaly. Int J Heat Fluid Flow 17:89–90 CrossRefGoogle Scholar
  38. 38.
    Fernández-Nieto ED (2003) Aproximación numérica de leyes de conservación hiperbólicas no homogéneas. Aplicación a las ecuaciones de aguas someras. Tesis doctoral, Universidad de Sevilla Google Scholar
  39. 39.
    García-Navarro P, Vázquez-Cendón ME (2000) On numerical treatment of the source terms in the shallow water equations. Comput Fluids 29:951–979 zbMATHCrossRefGoogle Scholar
  40. 40.
    Gatski T, Speziale C (1993) On explicit algebraic stress models for complex turbulent flows. J Fluid Mech 154:59–78 CrossRefMathSciNetGoogle Scholar
  41. 41.
    Gerrits J (2001) Dynamics of liquid-filled spacecraft. PhD thesis, University of Groningen, The Netherlands Google Scholar
  42. 42.
    Giger M, Dracos T, Jirka GH (1991) Entrainment and mixing in plane turbulent jets in shallow water. J Hydraul Res 29(4):615–643 CrossRefGoogle Scholar
  43. 43.
    Harten A, Lax P, van Leer A (1983) On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev 25:35–61 zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225 zbMATHCrossRefGoogle Scholar
  45. 45.
    Hsieh TY, Yang JC (2003) Investigation on the suitability of two-dimensional depth-averaged models for bend-flow simulation. J Hydraul Eng 129(8):597–612 CrossRefGoogle Scholar
  46. 46.
    Hubbard ME, Dodd N (2002) A 2D numerical model of wave runup and overtopping. Coast Eng 47:1–26 CrossRefGoogle Scholar
  47. 47.
    Hubbard ME, García-Navarro P (2000) Flux difference splitting and the balancing of source terms and flux gradients. J Comput Phys 165:89–125 zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Idelsohn SR, Storti MA, Oñate E (2001) Lagrangian formulations to solve free surface incompressible inviscid fluid flows. Comput Methods Appl Mech Eng 191:583–593 zbMATHCrossRefGoogle Scholar
  49. 49.
    Ingram RG, Chu VH (1987) Flow around islands in Rupert Bay: an investigation of the bottom friction effect. J Geophys Res 92(C13):14521–14533 Google Scholar
  50. 50.
    Jia Y, Wang SSY (1999) Numerical model for channel flow and morphological change studies. J Hydraul Eng 125(9):924–933 CrossRefGoogle Scholar
  51. 51.
    Jirka GH (2001) Large scale flow structures and mixing processes in shallow flows. J Hydraul Res 39(6):567–573 CrossRefGoogle Scholar
  52. 52.
    Jones WP, Launder B (1972) The prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Transf 15:301–314 CrossRefGoogle Scholar
  53. 53.
    LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge texts in applied mathematics, vol 31. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  54. 54.
    Lien HC, Hsieh TY, Yang JC, Yeh KC (1999) Bend-flow simulation using 2D depth-averaged model. J Hydraul Eng 125(10):1097–1108 CrossRefGoogle Scholar
  55. 55.
    Lloyd PM, Stansby PK (1997) Shallow water flow around model conical islands of small side slope. Part 1: Surface piercing. J Hydraul Eng 123:1057–1067 CrossRefGoogle Scholar
  56. 56.
    Lloyd PM, Stansby PK (1997) Shallow water flow around model conical islands of small side slope. Part 2: Submerged. J Hydraul Eng 123:1068–1077 CrossRefGoogle Scholar
  57. 57.
    Lloyd PM, Stansby PK, Chen D (2001) Wake formation around islands in oscillatory laminar shallow water flows. Part 1. Experimental investigation. J Fluid Mech 429:217–238 zbMATHCrossRefGoogle Scholar
  58. 58.
    Maronnier V, Picasso M, Rappaz J (1999) Numerical simulation of free surface flows. J Comput Phys 155:439–455 zbMATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Menter FR (1993) Zonal two-equation kω turbulence models for aerodynamic flows. AIAA paper 93-2906. In 24th fluid dynamics conference, 6–9 July 1993, Orlando, FL Google Scholar
  60. 60.
    Miglio E, Quarteroni A, Saleri F (1999) Finite element approximation of quasi-3D shallow water equations. Comput Methods Appl Mech Eng 174:355–369 zbMATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Minh-Duc B, Wenka T, Rodi W (2004) Numerical modeling of bed deformation in laboratory channels. J Hydraul Eng 130(9):894–904 CrossRefGoogle Scholar
  62. 62.
    Molls T, Chaudhry MH (1995) Depth-averaged open-channel flow model. J Hydraul Eng 121(6):453–465 CrossRefGoogle Scholar
  63. 63.
    Nichols BD, Hirt CW (1973) Calculating three-dimensional free surface flows in the vicinity of submerged and exposed structures. J Comput Phys 12:234–246 CrossRefGoogle Scholar
  64. 64.
    Nichols BD, Hirt CW (1975) Methods for calculating multidimensional, transient free surface flows past bodies. In: Proc 1st int conf on numer ship hydrodyn, Gaithersburg, MD Google Scholar
  65. 65.
    Olsen NRB (1999) Two-dimensional numerical modelling of flushing processes in water reservoirs. J Hydraul Res 37(1):3–16 CrossRefGoogle Scholar
  66. 66.
    Olsen NRB, Kjellesvig HM (1998) Three-dimensional numerical flow modelling for estimation of spillway capacity. J Hydraul Res 36(5):775–784 CrossRefGoogle Scholar
  67. 67.
    Olsen NRB, Melaaen MC (1998) Three-dimensional calculation of scour around cylinders. J Hydraul Eng 119(9):1049–1054 Google Scholar
  68. 68.
    Peltier E, Duplex J, Latteux B, Pechon P, Chausson P (1991) Finite element model for bed-load transport and morphological evolution. Comput Model Ocean Eng 91 Google Scholar
  69. 69.
    Pena L, Cea L, Puertas J (2004) Turbulent flow: an experimental analysis in vertical slot fishways. In: Fifth international symposium on ecohydraulics, Madrid, Spain, IAHR, pp 881–888 Google Scholar
  70. 70.
    Playán E, Walker WR, Merkley GP (1994) Two-dimensional simulation of basin irrigation I: theory. J Irrig Drain Eng 120(5):837–856 CrossRefGoogle Scholar
  71. 71.
    Pope (1975) A more general effective-viscosity hypothesis. J Fluid Mech 472:331–340 CrossRefGoogle Scholar
  72. 72.
    Puertas J, Pena L, Teijeiro T (2004) An experimental approach to the hydraulics of vertical slot fishways. J Hydraul Eng 130(1):10–23 CrossRefGoogle Scholar
  73. 73.
    Rajaratnam N, Katopodis C, Solanski S (1992) New designs for vertical slot fishways. Can J Civ Eng 19(3):402–414 CrossRefGoogle Scholar
  74. 74.
    Rajaratnam N, van der Vinne G, Katopodis C (1986) Hydraulics of vertical slot fishways. J Hydraul Eng 112(10):909–927 CrossRefGoogle Scholar
  75. 75.
    Rameshwaran P, Shiono K (2003) Computer modelling of two-stage meandering channel flows. Water Marit Eng 156(4):325–339 CrossRefGoogle Scholar
  76. 76.
    Rastogi AK, Rodi W (1978) Predictions of heat and mass transfer in open channels. J Hydraul Div HY 3:397–420 Google Scholar
  77. 77.
    Richardson JE, Panchang VG (1998) Three-dimensional simulation of scour-inducing flow at bridge piers. J Hydraul Eng 124(5):530–540 CrossRefGoogle Scholar
  78. 78.
    Rider WJ, Kothe DB (1998) Reconstructing volume tracking. J Comput Phys 141:112–152 zbMATHCrossRefMathSciNetGoogle Scholar
  79. 79.
    Rodi W (1976) A new algebraic relation for calculating the Reynolds stresses. Z Angew Math Mech 56:219–221 CrossRefMathSciNetGoogle Scholar
  80. 80.
    Roe PL (1986) Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics. J Comput Phys 63:458–476 zbMATHCrossRefMathSciNetGoogle Scholar
  81. 81.
    Sauvaget P, David E, Soares CG (2000) Modelling tidal currents on the coast of Portugal. Coast Eng 40:393–409 CrossRefGoogle Scholar
  82. 82.
    Scardovelli R, Zaleski S (1999) Direct numerical simulation of free surface and interfacial flows. Annu Rev Fluid Mech 31:567–603 CrossRefMathSciNetGoogle Scholar
  83. 83.
    Sleigh PA, Gaskell PH, Berzins M, Wright NG (1998) An unstructured finite-volume algorithm for predicting flow in rivers and estuaries. Comput Fluids 27(4):479–508 zbMATHCrossRefGoogle Scholar
  84. 84.
    Stansby PK (1997) Semi-implicit finite volume shallow-water flow and solute transport solver with kε turbulence model. Int J Numer Methods Fluids 25:285–313 zbMATHCrossRefMathSciNetGoogle Scholar
  85. 85.
    Stansby PK, Lloyd PM (2001) Wake formation around islands in oscillatory laminar shallow-water flows. Part 2. Three-dimensional boundary-layer modelling. J Fluid Mech 429:239–254 zbMATHCrossRefGoogle Scholar
  86. 86.
    Thomas FO, Goldschmidt VW (1986) Structural characteristics of developing turbulent planar jet. J Fluid Mech 63:227–256 CrossRefGoogle Scholar
  87. 87.
    Toro EF (1999) Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer, New York zbMATHGoogle Scholar
  88. 88.
    Toro EF (2001) Shock-capturing methods for free-surface shallow flows. Wiley, Chichester zbMATHGoogle Scholar
  89. 89.
    Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Nas JHS, Yan YJ (2001) A front tracking method for the computations of multiphase flow. J Comput Phys 169:708–759 zbMATHCrossRefGoogle Scholar
  90. 90.
    Uijttewaal WSJ, Booij R (2000) Effects of shallowness on the development of free-surface mixing layers. Phys Fluids 12(2):392–402 CrossRefzbMATHGoogle Scholar
  91. 91.
    Uijttewaal WSJ, Girka GH (2003) Grid turbulence in shallow flows. J Fluid Mech 489:325–344 zbMATHCrossRefGoogle Scholar
  92. 92.
    Uijttewaal WSJ, Tukker J (1998) Development of quasi two-dimensional structures in a shallow free-surface mixing layer. Exp Fluids 24:192–200 CrossRefGoogle Scholar
  93. 93.
    Uittenbogaard R, van Vossen B (2001) 2D-DNS of quasi-2D turbulence in shallow water. In: 3rd AFOSR international conference on direct numerical simulation and large eddy simulation (TAICDL), University of Texas at Arlington Google Scholar
  94. 94.
    van Prooijen BC, Booij R, Uijttewaal WSJ (2000) Measurement and analysis methods of large scale horizontal coherent structures in a wide shallow channel. In: 10th international symposium on applications of laser techniques to fluid mechanics. Calouste Gulbenkian Foundation, Lisbon Google Scholar
  95. 95.
    Vázquez-Cendón ME (1996) An efficient upwind scheme with finite volumes of the edge-type for the bidimensional shallow water equations. In: Benkhanldoun F, Vilsmeier R (eds) Finite volumes for complex applications. Problems and perspectives. Hermes, Paris, pp 605–612 Google Scholar
  96. 96.
    Vázquez-Cendón ME (1999) Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J Comput Phys 148:497–526 zbMATHCrossRefMathSciNetGoogle Scholar
  97. 97.
    Wilson CAME, Bates PD, Hervouet JM (2002) Comparison of turbulence models for stage-discharge rating curve prediction in reach-scale compound channel flows using two-dimensional finite element methods. J Hydrol 257:42–58 CrossRefGoogle Scholar
  98. 98.
    Winterwerp JC, Wang ZB, van Kester ATM, Verweij JF (2002) Far-field impact of water injection dredging in the Crouch River. Water Marit Eng 154(4):285–296 CrossRefGoogle Scholar
  99. 99.
    Wolanski E, Imberger J, Heron ML (1984) Island wakes in shallow coastal waters. J Geophys Res 89:10553–10569 CrossRefGoogle Scholar
  100. 100.
    Wu W (2004) Depth-averaged two-dimensional numerical modeling of unsteady flow and nonuniform sediment transport in open channels. J Hydraul Eng 130(10):1013–1024 CrossRefGoogle Scholar
  101. 101.
    Wu W, Rodi W, Wenka T (2000) 3D numerical modeling of flow and sediment transport in open channels. J Hydraul Eng 126(1):4–15 CrossRefGoogle Scholar
  102. 102.
    Ye J, McCorquodale JA (1997) Depth-averaged hydrodynamic model in curvilinear collocated grid. J Hydraul Eng 123(5):380–388 CrossRefGoogle Scholar
  103. 103.
    Yoon TH (2004) Finite volume model for two-dimensional shallow water flows on unstructured grids. J Hydraul Eng 130(7):678–688 CrossRefGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2007

Authors and Affiliations

  • Luis Cea
    • 1
    Email author
  • Jerónimo Puertas
    • 1
  • María-Elena Vázquez-Cendón
    • 2
  1. 1.Departamento de Métodos Matemáticos y de RepresentaciónUniversidad de A CoruñaA CoruñaSpain
  2. 2.Departamento de Matemática AplicadaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations