Advertisement

Automating the Finite Element Method

  • Anders Logg
Article

Abstract

The finite element method can be viewed as a machine that automates the discretization of differential equations, taking as input a variational problem, a finite element and a mesh, and producing as output a system of discrete equations. However, the generality of the framework provided by the finite element method is seldom reflected in implementations (realizations), which are often specialized and can handle only a small set of variational problems and finite elements (but are typically parametrized over the choice of mesh).

This paper reviews ongoing research in the direction of a complete automation of the finite element method. In particular, this work discusses algorithms for the efficient and automatic computation of a system of discrete equations from a given variational problem, finite element and mesh. It is demonstrated that by automatically generating and compiling efficient low-level code, it is possible to parametrize a finite element code over variational problem and finite element in addition to the mesh.

Keywords

Variational Problem Minimum Span Tree Element Tensor Operation Count Multilinear Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

A

The differential operator of the model A(u)=f

A

The global tensor with entries {A i }i∈ℐ

A0

The reference tensor with entries \(\{A^{0}_{i\alpha}\}_{i\in\mathcal{I}_{K},\alpha\in\mathcal{A}}\)

\(\bar{A}^{0}\)

The matrix representation of the (flattened) reference tensor A 0

AK

The element tensor with entries \(\{A^{K}_{i}\}_{i\in\mathcal{I}_{K}}\)

a

The semilinear, multilinear or bilinear form

aK

The local contribution to a multilinear form a from K

aK

The vector representation of the (flattened) element tensor A K

\(\mathcal{A}\)

The set of secondary indices

The set of auxiliary indices

e

The error, e=Uu

FK

The mapping from K 0 to K

GK

The geometry tensor with entries \(\{G_{K}^{\alpha}\}_{\alpha\in\mathcal{A}}\)

gK

The vector representation of the (flattened) geometry tensor G K

The set j=1 r [1,N j ] of indices for the global tensor A

K

The set j=1 r [1,n K j ] of indices for the element tensor A K (primary indices)

ιK

The local-to-global mapping from \(\mathcal{N}_{K}\) to \(\mathcal{N}\)

\(\hat{\iota}_{K}\)

The local-to-global mapping from \(\hat{\mathcal{N}}_{K}\) to \(\hat{\mathcal{N}}\)

ιKj

The local-to-global mapping from \(\mathcal{N}_{K}^{j}\) to \(\mathcal{N}^{j}\)

K

A cell in the mesh  \(\mathcal{T}\)

K0

The reference cell

L

The linear form (functional) on \(\hat{V}\) or \(\hat{V}_{h}\)

m

The number of discrete function spaces used in the definition of a

N

The dimension of \(\hat{V}_{h}\) and V h

Nj

The dimension V h j

Nq

The number of quadrature points on a cell

n0

The dimension of ℘0

nK

The dimension of ℘ K

\(\hat{n}_{K}\)

The dimension of \(\hat{\mathcal{P}}_{K}\)

nKj

The dimension of ℘ K j

\(\mathcal{N}\)

The set of global nodes on V h

\(\hat{\mathcal{N}}\)

The set of global nodes on \(\hat{V}_{h}\)

\(\mathcal{N}^{j}\)

The set of global nodes on V h j

\(\mathcal{N}_{0}\)

The set of local nodes on ℘0

\(\mathcal{N}_{K}\)

The set of local nodes on ℘ K

\(\hat{\mathcal{N}}_{K}\)

The set of local nodes on \(\hat{\mathcal{P}}_{K}\)

\(\mathcal{N}_{K}^{j}\)

The set of local nodes on ℘ K j

νi0

A node on ℘0

νiK

A node on ℘ K

\(\hat{\nu}^{K}_{i}\)

A node on \(\hat{\mathcal{P}}_{K}\)

νiK,j

A node on ℘ K j

0

The function space on K 0 for V h

\(\hat{\mathcal{P}}_{0}\)

The function space on K 0 for \(\hat{V}_{h}\)

0j

The function space on K 0 for V h j

K

The local function space on K for V h

\(\hat{\mathcal{P}}_{K}\)

The local function space on K for \(\hat{V}_{h}\)

Kj

The local function space on K for V h j

Pq(K)

The space of polynomials of degree ≤q on K

\(\overline{\mathcal{P}}_{K}\)

The local function space on K generated by {℘ K j } j=1 m

R

The residual, R(U)=A(U)−f

r

The arity of the multilinear form a (the rank of A and A K )

U

The discrete approximate solution, Uu

(Ui)

The vector of expansion coefficients for U=∑ i=1 N U i φ i

u

The exact solution of the given model A(u)=f

V

The space of trial functions on Ω (the trial space)

\(\hat{V}\)

The space of test functions on Ω (the test space)

Vh

The space of discrete trial functions on Ω (the discrete trial space)

\(\hat{V}_{h}\)

The space of discrete test functions on Ω (the discrete test space)

Vhj

A discrete function space on Ω

|V|

The dimension of a vector space V

Φi

A basis function in ℘0

\(\hat{\Phi}_{i}\)

A basis function in \(\hat{\mathcal{P}}_{0}\)

Φij

A basis function in ℘ 0 j

φi

A basis function in V h

\(\hat{\phi}_{i}\)

A basis function in \(\hat{V}_{h}\)

φij

A basis function in V h j

φiK

A basis function in ℘ K

\(\hat{\phi}_{i}^{K}\)

A basis function in \(\hat{\mathcal{P}}_{K}\)

φiK,j

A basis function in ℘ K j

φ

The dual solution

\(\mathcal{T}\)

The mesh

Ω

A bounded domain in ℝ d

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arge SE, Bruaset AM, Langtangen HP (eds) (1997) Modern software tools for scientific computing. Birkhäuser, Basel zbMATHGoogle Scholar
  2. 2.
    Arnold DN, Winther R (2002) Mixed finite elements for elasticity. Numer Math 92:401–419 zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Babuška I (1971) Error bounds for finite element method. Numer Math 16:322–333 CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Bagheri B, Scott LR (2003) Analysa, URL: http://people.cs.uchicago.edu/~ridg/al/aa.html
  5. 5.
    Bagheri B, Scott LR (2004) About Analysa. Tech rep TR-2004-09, University of Chicago, Department of Computer Science Google Scholar
  6. 6.
    Balay S, Eijkhout V, Gropp WD, McInnes LC, Smith BF (1997) Efficient management of parallelism in object oriented numerical software libraries. In: Arge E, Bruaset AM, Langtangen HP (eds) Modern software tools in scientific computing. Birkhäuser, Basel, pp. 163–202 Google Scholar
  7. 7.
    Balay S, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Smith BF, Zhang H (2004) PETSc users manual. Tech rep ANL-95/11-Revision 2.1.5, Argonne National Laboratory Google Scholar
  8. 8.
    Balay S, Buschelman K, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Smith BF, Zhang H (2006) PETSc. URL: http://www.mcs.anl.gov/petsc/
  9. 9.
    Bangerth W (2000) Using modern features of C++ for adaptive finite element methods: dimension-independent programming in deal.II. In: Deville M, Owens R (eds) Proceedings of the 16th IMACS world congress 2000, Lausanne, Switzerland, 2000. Document Sessions/118-1 Google Scholar
  10. 10.
    Bangerth W, Kanschat G (1999) Concepts for object-oriented finite element software—the deal.II library. Preprint 99-43 (SFB 359), IWR Heidelberg, October Google Scholar
  11. 11.
    Bangerth W, Hartmann R, Kanschat G (2006) deal.II differential equations analysis library. URL: http://www.dealii.org/
  12. 12.
    Beazley DM (2006) SWIG: an easy to use tool for integrating scripting languages with C and C++. Presented at the 4th Annual Tcl/Tk Workshop, Monterey, CA, 2006 Google Scholar
  13. 13.
    Beazley DM et al (2006) Simplified wrapper and interface generator. URL: http://www.swig.org/
  14. 14.
    Becker EB, Carey GF, Oden JT (1981) Finite elements: an introduction. Prentice-Hall, Englewood Cliffs zbMATHGoogle Scholar
  15. 15.
    Becker R, Rannacher R (2001) An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer 10:1–102 zbMATHMathSciNetGoogle Scholar
  16. 16.
    Blackford LS, Demmel J, Dongarra J, Duff I, Hammarling S, Henry G, Heroux M, Kaufman L, Lumsdaine A, Petitet A, Pozo R, Remington K, Whaley RC (2002) An updated set of basic linear algebra subprograms (BLAS). ACM Trans Math Softw 28:135–151 CrossRefGoogle Scholar
  17. 17.
    Boffi D (1997) Three-dimensional finite element methods for the Stokes problem. SIAM J Numer Anal 34:664–670 zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Brenner SC, Scott LR (1994) The mathematical theory of finite element methods. Springer, Berlin zbMATHGoogle Scholar
  19. 19.
    Brezzi F (1974) On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO Anal Numér R-2:129–151 MathSciNetGoogle Scholar
  20. 20.
    Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer series in computational mathematics, vol 15. Springer, New York zbMATHGoogle Scholar
  21. 21.
    Brezzi F, Douglas J Jr, Marini LD (1985) Two families of mixed finite elements for second order elliptic problems. Numer Math 47:217–235 zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Bruaset AM, Langtangen HP et al (2006) Diffpack. URL: http://www.diffpack.com/
  23. 23.
    Castigliano CAP (1879) Théorie de l’équilibre des systèmes élastiques et ses applications. AF Negro, Torino Google Scholar
  24. 24.
    Ciarlet PG (1976) Numerical analysis of the finite element method. Les Presses de l’Universite de Montreal Google Scholar
  25. 25.
    Ciarlet PG (1978) The finite element method for elliptic problems. North-Holland, Amsterdam zbMATHGoogle Scholar
  26. 26.
    CIMNE International Center for Numerical Methods in Engineering (2006) GiD. URL: http://gid.cimne.upc.es/
  27. 27.
    Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms, 2nd edn. MIT Press Google Scholar
  28. 28.
    Courant R (1943) Variational methods for the solution of problems of equilibrium and vibrations. Bull Am Math Soc 49:1–23 zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Crouzeix M, Raviart PA (1973) Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal Numér 7:33–76 MathSciNetGoogle Scholar
  30. 30.
    Demmel JW (1997) Applied numerical linear algebra. SIAM Google Scholar
  31. 31.
    Dubiner M (1991) Spectral methods on triangles and other domains. J Sci Comput 6:345–390 zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Dular P, Geuzaine C (2005) GetD reference manual Google Scholar
  33. 33.
    Dular P, Geuzaine C (2006) GeD: a general environment for the treatment of discrete problems. URL: http://www.geuz.org/getdp/
  34. 34.
    Dupont T, Hoffman J, Johnson C, Kirby RC, Larson MG, Logg A, Scott LR (2003) The FEniCS project tech rep 2003-21, Chalmers Finite Element Center Preprint Series Google Scholar
  35. 35.
    Eaton JW (2006) Octave. URL: http://www.octave.org/
  36. 36.
    Eriksson K, Johnson C (1991) Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J Numer Anal 28(1):43–77 zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Eriksson K, Johnson C (1991) Adaptive finite element methods for parabolic problems II: optimal order error estimates in l l 2 and l l . SIAM J Numer Anal 32:706–740 CrossRefMathSciNetGoogle Scholar
  38. 38.
    Eriksson K, Johnson C (1995) Adaptive finite element methods for parabolic problems IV: nonlinear problems. SIAM J Numer Anal 32:1729–1749 zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Eriksson K, Johnson C (1995) Adaptive finite element methods for parabolic problems V: long-time integration. SIAM J Numer Anal 32:1750–1763 zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Eriksson K, Johnson C Adaptive finite element methods for parabolic problems III: time steps variable in space, in preparation Google Scholar
  41. 41.
    Eriksson K, Johnson C, Larsson S (1998) Adaptive finite element methods for parabolic problems VI: analytic semigroups. SIAM J Numer Anal 35:1315–1325 zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Eriksson K, Estep D, Hansbo P, Johnson C (1995) Introduction to adaptive methods for differential equations. Acta Numer 4:105–158 MathSciNetCrossRefGoogle Scholar
  43. 43.
    Eriksson K, Estep D, Hansbo P, Johnson C (1996) Computational differential equations. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  44. 44.
    Eriksson K, Estep D, Johnson C (2003) Applied mathematics: body and soul, vol I. Springer, Berlin Google Scholar
  45. 45.
    Eriksson K, Estep D, Johnson C (2003) Applied mathematics: body and soul, vol II. Springer, Berlin Google Scholar
  46. 46.
    Eriksson K, Estep D, Johnson C (2003) Applied mathematics: body and soul, vol III. Springer, Berlin Google Scholar
  47. 47.
    Eriksson K, Johnson C, Logg A (2003) Explicit time-stepping for stiff ODEs. SIAM J Sci Comput 25:1142–1157 zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Eriksson K, Johnson C, Hoffman J, Jansson J, Larson MG, Logg A (2006) Body and soul applied mathematics education reform project. URL: http://www.bodysoulmath.org/
  49. 49.
    Estep D, French D (1994) Global error control for the continuous Galerkin finite element method for ordinary differential equations. M2AN 28:815–852 Google Scholar
  50. 50.
    Estep D, Larson M, Williams R (2000) Estimating the error of numerical solutions of systems of nonlinear reaction–diffusion equations. Mem Am Math Soc 696:1–109 MathSciNetGoogle Scholar
  51. 51.
    Free Software Foundation (1991) GNU GPL. URL: http://www.gnu.org/copyleft/gpl.html
  52. 52.
    Free Software Foundation (1999) GNU LGPL. URL: http://www.gnu.org/copyleft/lesser.html
  53. 53.
    Free Software Foundation (2006) The free software definition. URL: http://www.gnu.org/philosophy/free-sw.html
  54. 54.
    Fries T-P, Matthies HG (2004) A review of Petrov–Galerkin stabilization approaches and an extension to meshfree methods. Tech rep Informatikbericht 2004-01, Institute of Scientific Computing, Technical University Braunschweig Google Scholar
  55. 55.
    Galerkin BG (1915) Series solution of some problems in elastic equilibrium of rods and plates. Vestnik inzhenerov i tekhnikov 19:897–908 Google Scholar
  56. 56.
    Golub GH, van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press Google Scholar
  57. 57.
    Hecht F, Pironneau O, Hyaric AL, Ohtsuka K (2005) FreeFEM++ manual Google Scholar
  58. 58.
    Hoffman J, Johnson C (2004) Encyclopedia of computational mechanics, vol 3. Wiley, New York. Chapter 7: computability and adaptivity in CFD Google Scholar
  59. 59.
    Hoffman J, Johnson C (2006) A new approach to computational turbulence modeling. Comput Methods Appl Mech Eng 195:2865–2880 CrossRefMathSciNetzbMATHGoogle Scholar
  60. 60.
    Hoffman J, Johnson C (2006) Computational turbulent incompressible flow: applied mathematics: body and soul, vol 4. Springer, Berlin Google Scholar
  61. 61.
    Hoffman J, Logg A (2002) DOLFIN: Dynamic Object oriented Library for FINite element computation. Tech rep 2002-06, Chalmers Finite Element Center Preprint Series Google Scholar
  62. 62.
    Hoffman J, Logg A (2004) Puffin user manual Google Scholar
  63. 63.
    Hoffman J, Logg A (2006) Puffin. URL: http://www.fenics.org/puffin/
  64. 64.
    Hoffman J, Johnson C, Logg A (2004) Dreams of calculus—perspectives on mathematics education. Springer, Berlin zbMATHGoogle Scholar
  65. 65.
    Hoffman J, Jansson J, Johnson C, Knepley MG, Kirby RC, Logg A, Scott LR, Wells GN (2006) FEniCS. http://www.fenics.org/
  66. 66.
    Hoffman J, Jansson J, Logg A, Wells GN (2006) DOLFIN. http://www.fenics.org/dolfin/
  67. 67.
    Hoffman J, Jansson J, Logg A, Wells GN (2004) DOLFIN user manual Google Scholar
  68. 68.
    Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cliffs zbMATHGoogle Scholar
  69. 69.
    Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59:85–99 zbMATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    Hulme BL (1972) Discrete Galerkin and related one-step methods for ordinary differential equations. Math Comput 26:881–891 zbMATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    Hulme BL (1972) One-step piecewise polynomial Galerkin methods for initial value problems. Math Comput 26:415–426 zbMATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    International Organization for Standardization (1996) ISO/IEC 14977:1996: information technology—syntactic metalanguage—extended BNF Google Scholar
  73. 73.
    Jansson J (2006) Ko. URL: http://www.fenics.org/ko/
  74. 74.
    Jansson J, Johnson C, Logg A (2005) Computational modeling of dynamical systems. Math Models Methods Appl Sci 15:471–481 zbMATHCrossRefMathSciNetGoogle Scholar
  75. 75.
    Jansson J, Logg A, et al (2006) Body and soul computer sessions. URL: http://www.bodysoulmath.org/sessions/
  76. 76.
    Karpeev DA, Knepley MG (2005) Flexible representation of computational meshes. ACM Trans Math Softw, submitted Google Scholar
  77. 77.
    Karpeev DA, Knepley MG (2006) Sieve. URL: http://www.fenics.org/sieve/
  78. 78.
    Kirby RC (2004) FIAT: a new paradigm for computing finite element basis functions. ACM Trans Math Softw 30:502–516 zbMATHCrossRefMathSciNetGoogle Scholar
  79. 79.
    Kirby RC (2006) FIAT. URL: http://www.fenics.org/fiat/
  80. 80.
    Kirby RC (2006) Optimizing FIAT with the level 3 BLAS. ACM Trans Math Softw 32(2):223–235. http://doi.acm.org/10.1145/1141885.1141889 CrossRefMathSciNetGoogle Scholar
  81. 81.
    Kirby RC, Logg A (2006) A compiler for variational forms. ACM Trans Math Softw 32(3):417–444 CrossRefMathSciNetGoogle Scholar
  82. 82.
    Kirby RC, Logg A (2007) Efficient compilation of a class of variational forms. ACM Trans Math Softw 33(3), accepted 31 August 2006 Google Scholar
  83. 83.
    Kirby RC, Knepley MG, Scott LR (2005) Evaluation of the action of finite element operators. BIT, submitted Google Scholar
  84. 84.
    Kirby RC, Knepley MG, Logg A, Scott LR (2005) Optimizing the evaluation of finite element matrices. SIAM J Sci Comput 27:741–758 zbMATHCrossRefMathSciNetGoogle Scholar
  85. 85.
    Kirby RC, Logg A, Scott LR, Terrel AR (2006) Topological optimization of the evaluation of finite element matrices, SIAM J Sci Comput 28(1):224–240 zbMATHCrossRefMathSciNetGoogle Scholar
  86. 86.
    Kitware (2006) The visualization ToolKit. URL: http://www.vtk.org/
  87. 87.
    Knepley MG, Smith BF (2006) ANL SIDL environment. URL: http://www-unix.mcs.anl.gov/ase/
  88. 88.
    Langtangen HP (1999) Computational partial differential equations—numerical methods and diffpack programming. Lecture notes in computational science and engineering. Springer, Berlin zbMATHGoogle Scholar
  89. 89.
    Langtangen HP (2005) Python scripting for computational science, 2nd edn. Springer, Berlin Google Scholar
  90. 90.
    Logg A (2003) Multi-adaptive Galerkin methods for ODEs I. SIAM J Sci Comput 24:1879–1902 zbMATHCrossRefMathSciNetGoogle Scholar
  91. 91.
    Logg A (2003) Multi-adaptive Galerkin methods for ODEs II: implementation and applications. SIAM J Sci Comput 25:1119–1141 zbMATHCrossRefMathSciNetGoogle Scholar
  92. 92.
    Logg A (2004) Automation of computational mathematical modeling. PhD thesis, Chalmers University of Technology, Sweden Google Scholar
  93. 93.
    Logg A (2004) Multi-adaptive time-integration. Appl Numer Math 48:339–354 zbMATHCrossRefMathSciNetGoogle Scholar
  94. 94.
    Logg A (2006) FFC. http://www.fenics.org/ffc/
  95. 95.
    Logg A (2006) FFC user manual Google Scholar
  96. 96.
    Logg A (2006) Multi-adaptive Galerkin methods for ODEs III: a priori error estimates. SIAM J Numer Anal 43:2624–2646 zbMATHCrossRefMathSciNetGoogle Scholar
  97. 97.
    Long K (2003) Sundance, a rapid prototyping tool for parallel PDE-constrained optimization. In: Large-scale PDE-constrained optimization. Lecture notes in computational science and engineering. Springer, Berlin Google Scholar
  98. 98.
    Long K (2004) Sundance 2.0 tutorial. Tech rep TR-2004-09, Sandia National Laboratories Google Scholar
  99. 99.
    Long K (2006) Sundance. URL: http://software.sandia.gov/sundance/
  100. 100.
    Mackie RI (1992) Object oriented programming of the finite element method. Int J Numer Meth Eng 35 Google Scholar
  101. 101.
    Masters I, Usmani AS, Cross JT, Lewis RW (1997) Finite element analysis of solidification using object-oriented and parallel techniques. Int J Numer Meth Eng 40:2891–2909 zbMATHCrossRefGoogle Scholar
  102. 102.
    Nédélec J-C (1980) Mixed finite elements in R 3. Numer Math 35:315–341 Google Scholar
  103. 103.
    Oliphant T et al (2006) Python numeric. URL: http://numeric.scipy.org/
  104. 104.
    OpenDX (2006) URL: http://www.opendx.org/
  105. 105.
    Pironneau O, Hecht F, Hyaric AL, Ohtsuka K (2006) FreeFEM. URL: http://www.freefem.org/
  106. 106.
    Ramachandra P (2006) MayaVi. URL: http://mayavi.sourceforge.net/
  107. 107.
    Raviart P-A, Thomas JM (1977) A mixed finite element method for 2nd order elliptic problems. In: Mathematical aspects of finite element methods. Proc conf, consiglio naz. delle ricerche (CNR), Rome, 1975. Lecture notes in math, vol 606. Springer, Berlin, pp 292–315 Google Scholar
  108. 108.
    Rayleigh (1870) On the theory of resonance. Trans Roy Soc A 161:77–118 Google Scholar
  109. 109.
    Ritz W (1908) Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. J Reine Angew Math 135:1–61 zbMATHGoogle Scholar
  110. 110.
    Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. SIAM Google Scholar
  111. 111.
    Samuelsson A, Wiberg N-E (1998) Finite element method basics. Studentlitteratur Google Scholar
  112. 112.
    Sandia National Laboratories (2006) ParaView. URL: http://www.paraview.org/
  113. 113.
    Strang G, Fix GJ (1973) An analysis of the finite element method. Prentice-Hall, Englewood Cliffs zbMATHGoogle Scholar
  114. 114.
    Tecplot (2006) URL: http://www.tecplot.com/
  115. 115.
    The Mathworks (2006) MATLAB. URL: http://www.mathworks.com/products/matlab/
  116. 116.
    Whaley RC, Dongarra J (1997) Automatically tuned linear algebra software. Tech rep UT-CS-97-366, University of Tennessee, December. URL: http://www.netlib.org/lapack/lawns/lawn131.ps
  117. 117.
    Whaley RC, Dongarra J, et al (2006) ATLAS. URL: http://math-atlas.sourceforge.net/
  118. 118.
    Whaley RC, Petitet A, Dongarra JJ (2001) Automated empirical optimization of software and the ATLAS project. Parallel Comput. 27–35. Also available as University of Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000 (www.netlib.org/lapack/lawns/lawn147.ps)
  119. 119.
    Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method—its basis and fundamentals, 6th edn. Elsevier, Amsterdam, first published in 1976 Google Scholar

Copyright information

© CIMNE, Barcelona, Spain 2007

Authors and Affiliations

  1. 1.Scientific ComputingSimula Research LaboratoryLysakerNorway

Personalised recommendations