Neuroactive nectar: compounds in nectar that interact with neurons

  • Julie A. MustardEmail author
Review Paper


As well as sugars to entice pollinators, nectar contains many other chemicals including amino acids and plant secondary compounds such as phenolics, alkaloids, and glycosides. Rather than simply the byproducts of plant metabolism or contamination by compounds meant to deter herbivory, it is clear that these chemicals may have important roles in nectar. Proposed functions of non-sugar components of nectar include pollinator nutrition, reducing nectar robbing, and defense against microbes. Additionally, some of these compounds are able to interact directly with the nervous system via binding to receptor proteins found on the surface of neurons. Thus, these neuroactive components of nectar may be able to manipulate pollinator behavior. To increase our ability to analyze the many functions of nectar, it is important to understand how specific components may interact with neurons. This review examines the neurotransmitter receptors that are targets of some of the chemicals present in nectar. Although these compounds also affect the nervous systems of vertebrates, the focus of this review is on the interactions between nectar and insect pollinators.


Neurotransmitter Nectar Pollinator Caffeine Nicotine Bee 



This work was supported, in part, by funds from the University of Texas Rio Grande Valley.


  1. Adler LS (2001) The ecological significance of toxic nectar. Oikos 91:409–420CrossRefGoogle Scholar
  2. Baracchi D, Marples A, Jenkins AJ, Leitch AR, Chittka L (2017) Nicotine in floral nectar pharmacologically influences bumblebee learning of floral features. Sci Rep 7:1951. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barbara GS, Zube C, Rybak J, Gauthier M, Grunewald B (2005) Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. J Comp Physiol A 191:823–836. CrossRefGoogle Scholar
  4. Barbara GS, Grunewald B, Paute S, Gauthier M, Raymond-Delpech V (2008) Study of nicotinic acetylcholine receptors on cultured antennal lobe neurones from adult honeybee brains. Invert Neurosci 8:19–29. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barnstedt O et al (2016) Memory-relevant mushroom body output synapses are cholinergic. Neuron 89:1237–1247. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Berenbaum MR, Johnson RM (2015) Xenobiotic detoxification pathways in honey bees. Curr Opin Insect Sci 10:51–58CrossRefPubMedCentralGoogle Scholar
  7. Bicker G (1991) Taurine-like immunoreactivity in photoreceptor cells and mushroom bodies: a comparison of the chemical architecture of insect nervous systems. Brain Res 560:201–206CrossRefPubMedCentralGoogle Scholar
  8. Bicker G (1999) Histochemistry of classical neurotransmitters in antennal lobes and mushroom bodies of the honeybee. Microsc Res Tech 45:174–183CrossRefPubMedCentralGoogle Scholar
  9. Bicker G, Schafer S, Ottersen OP, Storm-Mathisen J (1988) Glutamate-like immunoreactivity in identified neuronal populations of insect nervous systems. J Neurosci 8:2108–2122CrossRefPubMedCentralGoogle Scholar
  10. Bloch G (2010) The social clock of the honeybee. J Biol Rhythms 25:307–317. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bogo G, Bortolotti L, Sagona S, Felicioli A, Galloni M, Barberis M, Nepi M (2019) Effects of non-protein amino acids in nectar on bee survival and behavior. J Chem Ecol 45:278–285. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Boros B, Farkas A, Jakabova S, Bacskay I, Kilar F, Felinger A (2010) LC-MS Quantitative determination of atropine and scopolamine in the Floral Nectar of Datura Species. Chromatographia 71:S43–S49. CrossRefGoogle Scholar
  13. Borycz J, Borycz JA, Edwards TN, Boulianne GL, Meinertzhagen IA (2012) The metabolism of histamine in the Drosophila optic lobe involves an ommatidial pathway: β-alanine recycles through the retina. J Exp Biol 215:1399–1411. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Choudhary AF, Laycock I, Wright GA (2012) gamma-Aminobutyric acid receptor A-mediated inhibition in the honeybee's antennal lobe is necessary for the formation of configural olfactory percepts. Eur J Neurosci 35:1718–1724. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Collin C, Hauser F, Gonzalez de Valdivia E, Li S, Reisenberger J, Carlsen EM, Khan Z, Hansen NO, Puhm F, Søndergaard L, Niemiec J, Heninger M, Ren GR, Grimmelikhuijzen CJ (2013) Two types of muscarinic acetylcholine receptors in Drosophila and other arthropods. Cell Mol Life Sci 70:3231–3242. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Couvillon MJ, Al Toufailia H, Butterfield TM, Schrell F, Ratnieks FLW, Schurch R (2015) Caffeinated forage tricks honeybees into increasing foraging and recruitment behaviors. Curr Biol 25:2815–2818. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dacher M, Lagarrigue A, Gauthier M (2005) Antennal tactile learning in the honeybee: effect of nicotinic antagonists on memory dynamics. Neuroscience 130:37–50. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Detzel A, Wink M (1993) Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals. Chemoecology 4:8–18CrossRefGoogle Scholar
  19. Dobrin SE, Herlihy JD, Robinson GE, Fahrbach SE (2011) Muscarinic regulation of Kenyon cell dendritic arborizations in adult worker honey bees. Arthropod Struct Develop 40:409–419CrossRefGoogle Scholar
  20. Dupuis JP, Bazelot M, Barbara GS, Paute S, Gauthier M, Raymond-Delpech V (2010) Homomeric RDL and heteromeric RDL/LCCH3 GABA receptors in the honeybee antennal lobes: two candidates for inhibitory transmission in olfactory processing. J Neurophysiol 103:458–468. CrossRefPubMedPubMedCentralGoogle Scholar
  21. El Hassani AK, Schuster S, Dyck Y, Demares F, Leboulle G, Armengaud C (2012) Identification, localization and function of glutamate-gated chloride channel receptors in the honeybee brain. Eur J Neurosci 36:2409–2420. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ffrench-Constant RH, Williamson MS, Davies TG, Bass C (2016) Ion channels as insecticide targets. J Neurogenet 30:163–177. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Frenkel L et al (2017) Organization of circadian behavior relies on glycinergic transmission. Cell Rep 19:72–85. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gardener MC, Gillman MP (2001) Analyzing variability in nectar amino acids: composition is less variable than concentration. J Chem Ecol 27:2545–2558CrossRefPubMedCentralGoogle Scholar
  25. Gauthier M et al (2006) Involvement of alpha-bungarotoxin-sensitive nicotinic receptors in long-term memory formation in the honeybee (Apis mellifera). Neurobiol Learn Mem 86:164–174. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Goldberg F, Grunewald B, Rosenboom H, Menzel R (1999) Nicotinic acetylcholine currents of cultured Kkenyon cells from the mushroom bodies of the honey bee Apis mellifera. J Physiol 514(Pt 3):759–768. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gottsberger G, Schrauwen J, Linskens HF (1984) Amino acids and sugars in nectar, and their putative evolutionary significance. Plant Syst Evol 145:55–77CrossRefGoogle Scholar
  28. Hammer M, Menzel R (1998) Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn Mem 5:146–156PubMedPubMedCentralGoogle Scholar
  29. Haverkamp A, Hansson BS, Baldwin IT, Knaden M, Yon F (2018) Floral trait variations among wild tobacco populations influence the foraging behavior of hawkmoth pollinators. Front Ecol Evol 6:1–10. CrossRefGoogle Scholar
  30. Heisenberg M (1998) What do the mushroom bodies do for the insect brain? An introduction. Learn Mem 5:1–10PubMedPubMedCentralGoogle Scholar
  31. Hendriksma HP, Oxman KL, Shafir S (2014) Amino acid and carbohydrate tradeoffs by honey bee nectar foragers and their implications for plant-pollinator interactions. J Insect Physiol 69:56–64. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Homberg U, Kingan TG, Hildebrand JG (1987) Immunocytochemistry of GABA in the brain and suboesophageal ganglion of Manduca sexta. Cell Tissue Res 248:1–24. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Homberg U, Hoskins SG, Hildebrand JG (1995) Distribution of acetylcholinesterase activity in the deutocerebrum of the sphinx moth Manduca sexta. Cell Tissue Res 279:249–259. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Inouye DW, Waller GD (1984) Responses of honey bees (Apis mellifera) to amino acid solutions mimicking floral nectars. Ecology 65:618–625CrossRefGoogle Scholar
  35. Irwin RE, Bronstein JL, Manson JS, Richardson L (2010) Nectar robbing: ecological and evolutionary perspectives. Annu Rev Ecol Evol Syst 41:271–292CrossRefGoogle Scholar
  36. Irwin RE, Cook D, Richardson LL, Gardner DL (2014) Secondary compounds in floral rewards of toxic rangeland plants: impacts on pollinators. J Agric Food Chem 62:7335–7344CrossRefPubMedCentralGoogle Scholar
  37. Ismail N, Robinson GE, Fahrbach SE (2006) Stimulation of muscarinic receptors mimics experience-dependent plasticity in the honey bee brain. Proc Natl Acad USA 103:207–211CrossRefGoogle Scholar
  38. Ismail N, Christine S, Robinson GE, Fahrbach SE (2008) Pilocarpine improves recognition of nestmates in young honey bees. Neurosci Lett 439:178–181CrossRefPubMedCentralGoogle Scholar
  39. Jacobsen DJ, Raguso RA (2018) Lingering effects of herbivory and plant defenses on pollinators. Curr Biol 28:R1164–R1169. CrossRefPubMedGoogle Scholar
  40. Jan LY, Jan YN (1976) L-glutamate as an excitatory transmitter at the Drosophila larval neuromuscular junction. J Physiol 262:215–236CrossRefPubMedCentralGoogle Scholar
  41. Jones AK (2018) Genomics, cys-loop ligand-gated ion channels and new targets for the control of insect pests and vectors. Curr Opin Insect Sci 30:1–7. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kaczorowski RL, Gardener MC, Holtsford TP (2005) Nectar traits in nicotiana section Alatae (Solanaceae) in relation to floral traits, pollinators, and mating system. Am J Bot 92:1270–1283. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kerchner A, Darók J, Bacskay I, Felinger A, Jakab G, Farkas A (2015) Protein and alkaloid patterns of the floral nectar in some solanaceous species. Acta Biol Hung 66:304–315. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kessler D, Baldwin IT (2007) Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors of Nicotiana attenuata. Plant J 49:840–854. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kim YS, Smith BH (2000) Effect of an amino acid on feeding preferences and learning behavior in the honey bee, Apis mellifera. J Insect Physiol 46:793–801CrossRefPubMedCentralGoogle Scholar
  46. Kohler A, Pirk CW, Nicolson SW (2012) Honeybees and nectar nicotine: deterrence and reduced survival versus potential health benefits. J Insect Physiol 58:286–292. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kreissl S, Bicker G (1989) Histochemistry of acetylcholinesterase and immunocytochemistry of an acetylcholine receptor-like antigen in the brain of the honeybee. J Comp Neurol 286:71–84. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kretschmar J, Baumann T (1999) Caffeine in Citrus flowers. Phytochemistry 52:19–23CrossRefGoogle Scholar
  49. Kucharski R, Mitri C, Grau Y, Maleszka R (2007) Characterization of a metabotropic glutamate receptor in the honeybee (Apis mellifera): implications for memory formation. Invert Neurosci 7:99–108. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Le Goff G, Hamon A, Bergé JB, Amichot M (2005) Resistance to fipronil in Drosophila simulans: influence of two point mutations in the RDL GABA receptor subunit. J Neurochem 92:1295–1305CrossRefPubMedCentralGoogle Scholar
  51. Leboulle G (2013) Glutamate neurotransmission and appetitive olfactory conditioning in the honeybee. In: Menzel R, Benjamin PR (eds) Invertebrate learning and memory. Handbook of behavioral neuroscience, vol 22. Elsevier, London. CrossRefGoogle Scholar
  52. Lees K, Musgaard M, Suwanmanee S, Buckingham SD, Biggin P et al (2014) Actions of Agonists, fipronil and ivermectin on the predominant in vivo splice and edit variant (RDLbd, I/V) of the Drosophila GABA receptor expressed in Xenopus laevis oocytes. PLoS ONE 9(5):e97468. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lin FJ, Pierce MM, Sehgal A, Wu T, Skipper DC, Chabba R (2010) Effect of taurine and caffeine on sleep-wake activity in Drosophila melanogaster. Nat Sci Sleep. 2:221–231. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Locatelli F, Bundrock G, Muller U (2005) Focal and temporal release of glutamate in the mushroom bodies improves olfactory memory in Apis mellifera. J Neurosci 25:11614–11618. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lozano VC, Armengaud C, Gauthier M (2001) Memory impairment induced by cholinergic antagonists injected into the mushroom bodies of the honeybee. J Comp Physiol A 187:249–254CrossRefPubMedCentralGoogle Scholar
  56. Lynch JW (2004) Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 84:1051–1095. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Menzel R (2001) Searching for the memory trace in a mini-brain, the honeybee. Learn Mem 8:53–62. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Mussig L, Richlitzki A, Rossler R, Eisenhardt D, Menzel R, Leboulle G (2010) Acute disruption of the NMDA receptor subunit NR1 in the honeybee brain selectively impairs memory formation. J Neurosci 30:7817–7825. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Mustard JA (2014) The buzz on caffeine in invertebrates: effects on behavior and molecular mechanisms. Cell Mol Life Sci 71:1375–1382. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Mustard JA, Dews L, Brugato A, Dey K, Wright GA (2012) Consumption of an acute dose of caffeine reduces acquisition but not memory in the honey bee. Behav Brain Res 232:217–224. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mustard JA, Jones L, Wright GA (2020) GABA signaling affects motor function in the honey bee. J Insect Physiol 120:103989. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Naef R, Jaquier A, Velluz A, Bachofen B (2004) From the linden flower to linden honey–volatile constituents of linden nectar, the extract of bee-stomach and ripe honey. Chem Biodivers 1:1870–1879. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Nauen R, Ebbinghaus-Kintscher U, Salgado VL, Kaussmann M (2003) Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic Biochem Physiol 76:55–69CrossRefGoogle Scholar
  64. Nepi M (2014) Beyond nectar sweetness: the hidden ecological role of non-protein amino acids in nectar. J Ecol 102:108–115CrossRefGoogle Scholar
  65. Nepi M et al (2012) Amino acids and protein profile in floral nectar: much more than a simple reward. Flora 207:475–481CrossRefGoogle Scholar
  66. Nepi M, Grasso DA, Mancuso S (2018) Nectar in plant-insect mutualistic relationships: from food reward to partner manipulation. Front Plant Sci 9:1063. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Nocentini D, Pacini E, Guarnieri M, Nepi M (2012) Flower morphology, nectar traits and pollinators of Cerinthe major (Boraginaceae-Lithospermeae). Flora 207:186–196. CrossRefGoogle Scholar
  68. Palmer MJ, Harvey J (2014) Honeybee Kenyon cells are regulated by a tonic GABA receptor conductance. J Neurophysiol 112:2026–2035CrossRefPubMedCentralGoogle Scholar
  69. Palmer MJ, Moffat C, Saranzewa N, Harvey J, Wright GA, Connolly CN (2013) Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nat Commun 4:1634. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Paoli PP, Donley D, Stabler D, Saseendranath A, Nicolson SW, Simpson SJ, Wright GA (2014) Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age. Amino Acids 46:1449–1458. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Peng T, Segers F, Nascimento F, Gruter C (2019) Resource profitability, but not caffeine, affects individual and collective foraging in the stingless bee Plebeia droryana. J Exp Biol. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Petanidou T, Van Laere A, Ellis WN, Smets E (2006) What shapes amino acid and sugar composition in Mediterranean floral nectars? Oikos 115:155–169CrossRefGoogle Scholar
  73. Pfeiffer K, Homberg U (2014) Organization and functional roles of the central complex in the insect brain. Annu Rev Entomol 59:165–184. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Raccuglia D, Mueller U (2013) Focal uncaging of GABA reveals a temporally defined role for GABAergic inhibition during appetitive associative olfactory conditioning in honeybees. Learn Mem 20:410–416. CrossRefPubMedPubMedCentralGoogle Scholar
  75. Rein J, Mustard JA, Strauch M, Smith BH, Galizia CG (2013) Octopamine modulates activity of neural networks in the honey bee antennal lobe. J Comp Physiol A 199:947–962. CrossRefGoogle Scholar
  76. Richardt A, Kemme T, Wagner S, Schwarzer D, Marahiel MA, Hovemann BT (2003) Ebony, a novel nonribosomal peptide synthetase for beta-alanine conjugation with biogenic amines in Drosophila. J Biol Chem. 278(42):41160–41166. CrossRefPubMedPubMedCentralGoogle Scholar
  77. Roguz K, Bajguz A, Chmur M, Gołębiewska A, Roguz A, Zych M (2019) Diversity of nectar amino acids in the Fritillaria (Liliaceae) genus: ecological and evolutionary implications. Sci Rep 9:15209. CrossRefPubMedPubMedCentralGoogle Scholar
  78. Roubik D, Yanega D, Aluja M, Buchmann S, Inouye DW (1995) On optimal nectar foraging by some tropical bees (Hymenoptera: Apidae). Apidologie 26:197–211CrossRefGoogle Scholar
  79. Ruedenauer FA, Leonhardt SD, Lunau K, Spaethe J (2019) Bumblebees are able to perceive amino acids via chemotactile antennal stimulation. J Comp Physiol A 205:321–331. CrossRefGoogle Scholar
  80. Sachse S, Galizia CG (2002) Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J Neurophysiol 87:1106–1117. CrossRefPubMedPubMedCentralGoogle Scholar
  81. Schäfer S, Bicker G (1986) Distribution of GABA-like immunoreactivity in the brain of the honeybee. J Comp Neurol 246:287–300. CrossRefPubMedPubMedCentralGoogle Scholar
  82. Schäfer S, Bicker G, Ottersen OP, Stormmathisen J (1988) Taurine-like immunoreactivity in the brain of the honeybee. J Comp Neurol 268:60–70CrossRefPubMedCentralGoogle Scholar
  83. Scheiner R, Pluckhahn S, Oney B, Blenau W, Erber J (2002) Behavioural pharmacology of octopamine, tyramine and dopamine in honey bees. Behav Brain Res 136:545–553CrossRefPubMedCentralGoogle Scholar
  84. Schulz DJ, Robinson GE (2001) Octopamine influences division of labor in honey bee colonies. J Comp Physiol A 187:53–61CrossRefPubMedCentralGoogle Scholar
  85. Si A, Helliwell P, Maleszka R (2004) Effects of NMDA receptor antagonists on olfactory learning and memory in the honeybee (Apis mellifera). Pharmacol Biochem Behav 77:191–197. CrossRefPubMedPubMedCentralGoogle Scholar
  86. Singaravelan N, Nee'man G, Inbar M, Izhaki I (2005) Feeding responses of free-flying honeybees to secondary compounds mimicking floral nectars. J Chem Ecol 31:2791–2804. CrossRefPubMedPubMedCentralGoogle Scholar
  87. Stabler D, Paoli PP, Nicolson SW, Wright GA (2015) Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids. J Exp Biol 218:793–802. CrossRefPubMedPubMedCentralGoogle Scholar
  88. Stevenson PC, Nicolson SW, Wright GA (2017) Plant secondary metabolites in nectar: impacts on pollinators and ecological functions. Funct Ecol 31:65–75CrossRefGoogle Scholar
  89. Strauss R (2002) The central complex and the genetic dissection of locomotor behaviour. Curr Opin Neurobiol 12:633–638CrossRefPubMedCentralGoogle Scholar
  90. Tadmor-Melamed H, Markman S, Arieli A, Distl M, Wink M, Izhaki I (2004) Limited ability of Palestine Sunbirds Nectarinia osea to cope with pyridine alkaloids in nectar of Tree Tobacco Nicotiana glauca. Funct Ecol 18:844–850CrossRefGoogle Scholar
  91. Terazima E, Yoshino M (2010) Modulatory action of acetylcholine on the Na+-dependent action potentials in Kenyon cells isolated from the mushroom body of the cricket brain. J Insect Physiol 56:1746–1754. CrossRefPubMedPubMedCentralGoogle Scholar
  92. Thany SH, Crozatier M, Raymond-Delpech V, Gauthier M, Lenaers G (2005) Apisalpha2, Apisalpha7-1 and Apisalpha7-2: three new neuronal nicotinic acetylcholine receptor alpha-subunits in the honeybee brain. Gene 344:125–132. CrossRefPubMedPubMedCentralGoogle Scholar
  93. Thomson JD, Draguleasa MA, Tan MG (2015) Flowers with caffeinated nectar receive more pollination. Arthropod-Plant Interactions 9:1–7CrossRefGoogle Scholar
  94. Tiedeken EJ, Stout JC, Stevenson PC, Wright GA (2014) Bumblebees are not deterred by ecologically relevant concentrations of nectar toxins. J Exp Biol 217:1620–1625. CrossRefPubMedPubMedCentralGoogle Scholar
  95. Wafford KA, Sattelle DB (1986) Effects of amino acid neurotransmitter candidates on an identified insect motoneurone. Neurosci Lett 63:135–140CrossRefPubMedCentralGoogle Scholar
  96. Whitton PS, Nicholson RA, Strang RHC (1994) GABA and taurine: electrophysiological responses of isolated locust (Schistocerca gregaria) somata to taurine and GABA application. J Insect Physiol 40:195–199. CrossRefGoogle Scholar
  97. Wolf H (2014) Inhibitory motoneurons in arthropod motor control: organisation, function, evolution. J Comp Physiol A 200:693–710. CrossRefGoogle Scholar
  98. Wright GA, Mustard JA, Simcock NK, Ross-Taylor AA, McNicholas LD, Popescu A, Marion-Poll F (2010) Parallel reinforcement pathways for conditioned food aversions in the honeybee. Curr Biol 20:2234–2240. CrossRefPubMedPubMedCentralGoogle Scholar
  99. Wright GA et al (2013) Caffeine in floral nectar enhances a pollinator's memory of reward. Science 339:1202–1204. CrossRefPubMedPubMedCentralGoogle Scholar
  100. Wu MN, Ho K, Crocker A, Yue Z, Koh K, Sehgal A (2009) The effects of caffeine on sleep in Drosophila require PKA activity, but not the adenosine receptor. J Neurosci 29:11029–11037. CrossRefPubMedPubMedCentralGoogle Scholar
  101. Wüstenberg DG, Grünewald B (2004) Pharmacology of the neuronal nicotinic acetylcholine receptor of cultured Kenyon cells of the honeybee, Apis mellifera. J Comp Physiol A 190:807–821. CrossRefGoogle Scholar
  102. Xia RY, Li MQ, Wu YS, Qi YX, Ye GY, Huang J (2016) A new family of insect muscarinic acetylcholine receptors. Insect Mol Biol 25(4):362–369. CrossRefPubMedPubMedCentralGoogle Scholar
  103. Zhang HG, ffrench-Constant RH, Jackson MB (1994) A unique amino acid of the Drosophila GABA receptor with influence on drug sensitivity by two mechanisms. J Physiol 479:65–75CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Texas Rio Grande ValleyBrownsvilleUSA

Personalised recommendations