Advertisement

Visitor or vector? The extent of rove beetle (Coleoptera: Staphylinidae) pollination and floral interactions

  • Thomas D. J. SayersEmail author
  • Martin J. Steinbauer
  • Rebecca E. Miller
Review Paper

Abstract

Beetles (Coleoptera) are a diverse group of overlooked pollinators, considered particularly important in tropical ecosystems. The role of the most diverse beetle family, Staphylinidae, as pollinators is generally considered minor, yet their relationships with plants are mostly unknown. Although often referred to as opportunistic visitors, it is arguable that the true extent of rove beetle pollination is underestimated given their frequency of visitation to flowers. This review comprehensively analysed the plant–pollinator or visitor interactions of the Staphylinidae and uncovered 108 well-described staphylinid–flower interactions across 27 seed plant families. Of these interactions, Staphylinidae were considered either potential or conclusive pollinators for 56 plant species, having either a primary or secondary role in pollination. Conversely, Staphylinidae were visitors to 40 plant species with a negligible role in pollination. For the remaining 12 interactions and additional anecdotal reports, the role of staphylinids as pollinators was unresolved. Staphylinid–flower interactions were most prevalent in the monocots and magnoliids (families: Araceae, Annonaceae, Arecaceae, and Magnoliaceae) involving predominantly generalist pollination systems, and interactions were limited to six staphylinid subfamilies (Omaliinae, Tachyporinae, Aleocharinae, Oxytelinae, Paederinae, and Staphylininae). Trends in the involvement of staphylinid subfamilies with particular plant lineages were identified, associated with differences in insect habit and floral rewards. Overall this review indicates that the role of Staphylinidae as pollinators, and Coleoptera as a whole, is underestimated. Caution, however, must be given to inferring the role of staphylinids in pollination because rove beetles commonly function as inadvertent secondary pollinators or antagonists there to fulfil other ecological roles.

Keywords

Araceae Cantharophily Floral traits Florivory Pollen feeding Pollinator effectiveness 

Notes

Acknowledgements

The authors thank Margaret Thayer and the Field Museum of Natural History, Chicago, for the identification of rove beetles found in Australian Araceae, and Margaret’s correspondence and insights into staphylinid–floral interactions. Thanks also to Nicholas Cuff for providing additional pollinator data from Northern Territory Typhonium and Sandy-Lynn Steenhuisen for sharing information on rove beetle visitation to South African Protea. This study was supported by funding from the Holsworth Wildlife Research Endowment and the Australian Postgraduate Award, granted to T.D.J. Sayers, and the Hermon Slade Foundation (HSF09/07) granted to REM.

Supplementary material

11829_2019_9698_MOESM1_ESM.xlsx (88 kb)
Supplementary material 1 (XLSX 88 KB)

References

  1. Albre J, Quilichini A, Gibernau M (2003) Pollination ecology of Arum italicum (Araceae). Bot J Linn Soc 141:205–214.  https://doi.org/10.1046/j.1095-8339.2003.00139.x CrossRefGoogle Scholar
  2. Aliscioni SS, Achler AP, Torretta JP (2017) Floral anatomy, micromorphology and visitor insects in three species of Aristolochia L. (Aristolochiaceae). NZ J Bot 55:496–513.  https://doi.org/10.1080/0028825X.2017.1380051 CrossRefGoogle Scholar
  3. Anderson AB, Overal WL, Henderson A (1988) Pollination ecology of a forest-dominant palm (Orbignya phalerata Mart.) in Northern Brazil. Biotropica 20:192–205.  https://doi.org/10.2307/2388234 CrossRefGoogle Scholar
  4. APG (2016) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20.  https://doi.org/10.1111/boj.12385 CrossRefGoogle Scholar
  5. Armstrong JE, Irvine AK (1989) Floral biology of Myristica insipida (Myristicaceae), a distinctive beetle pollination syndrome. Am J Bot 76:86–94CrossRefGoogle Scholar
  6. Barfod AS, Hagen M, Borchsenius F (2011) Twenty-five years of progress in understanding pollination mechanisms in palms (Arecaceae). Ann Bot 108:1503–1516CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bawa KS (1990) Plant–pollinator interactions in tropical rain forests. Ann Rev Ecol Syst 21:399–422CrossRefGoogle Scholar
  8. Beath DN (1999) Dynastine scarab beetle pollination in Dieffenbachia longispatha (Araceae) on Barro Colorado Island (Panama) compared with La Selva Biological Station (Costa Rica). Aroideana 22:63–71Google Scholar
  9. Bernal R, Ervik F (1996) Floral biology and pollination of the dioecious palm Phytelephas seemannii in Colombia: an adaptation to staphylinid beetles. Biotropica 28:682–696.  https://doi.org/10.2307/2389054 CrossRefGoogle Scholar
  10. Bernhardt P (2000) Convergent evolution and adaptive radiation of beetle-pollinated angiosperms. Plant Syst Evol 222:293–320CrossRefGoogle Scholar
  11. Bernhardt P, Thien LB (1987) Self-isolation and insect pollination in the primitive angiosperms: new evaluations of older hypotheses. Plant Syst Evol 156:159–176CrossRefGoogle Scholar
  12. Blanche R, Cunningham SA (2005) Rain forest provides pollinating beetles for Atemoya crops. J Econ Entomol 98:1193–1201.  https://doi.org/10.1603/0022-0493-98.4.1193 CrossRefPubMedGoogle Scholar
  13. Boyce PC (2008) A taxonomic revision of Biarum. Curtis’s Botanical Magazine 25:2–17CrossRefGoogle Scholar
  14. Brodie BS, Renyard A, Gries R, Zhai H, Ogilvie S, Avery J, Gries G (2018) Identification and field testing of floral odorants that attract the rove beetle Pelecomalium testaceum (Mannerheim) to skunk cabbage, Lysichiton americanus (L.). Arthropod–Plant Interact 12:591–599.  https://doi.org/10.1007/s11829-018-9607-z CrossRefGoogle Scholar
  15. Buchmann S (2015) Pollination in the Sonoran desert region. In: Phillips SJ, Comus PW, Dimmitt MA, Brewer LM (eds) A natural history of the Sonoran Desert, 2nd edn. Arizona-Sonora Desert Museum Press, Tucson, and University of California Press, Oakland, pp 124–129Google Scholar
  16. Buchmann SL, Nabhan GP (1996) The forgotten pollinators. Island Press, Washington D.C.Google Scholar
  17. Burgess KS, Singfield J, Melendez V, Kevan PG (2004) Pollination biology of Aristolochia grandiflora (Aristolochiaceae) in Veracruz, Mexico. Ann Missouri Bot Gard 91:346–356Google Scholar
  18. Búrquez A, Sarukhán J, Pedroza AL (1987) Floral biology of a primary rain forest palm, Astrocaryum mexicanum Liebm. Bot J Linn Soc 94:407–419CrossRefGoogle Scholar
  19. Cai C, Leschen RA, Hibbett DS, Xia F, Huang D (2017) Mycophagous rove beetles highlight diverse mushrooms in the Cretaceous. Nat Commun 8:14894.  https://doi.org/10.1038/ncomms14894 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cai C, Escalona HE, Li L, Yin Z, Huang D, Engel MS (2018) Beetle pollination of cycads in the Mesozoic. Curr Biol 28:1–7.  https://doi.org/10.1016/j.cub.2018.06.036 CrossRefGoogle Scholar
  21. Caleca V, Verde GL, Ragusa S, Tsolakis H (2002) Insect and hand pollination of Annona spp. in Sicily. Phytophaga 12:117–127Google Scholar
  22. Cardinal S, Danforth BN (2013) Bees diversified in the age of eudicots. Proc R Soc B 280:20122686.  https://doi.org/10.1098/rspb.2012.2686 CrossRefPubMedGoogle Scholar
  23. Chan YM, Saw LG (2011) Notes on the pollination ecology of the palm genus Johannesteijsmannia (Arecaceae). J Pollinat Ecol 6:108–117CrossRefGoogle Scholar
  24. Chen G, Zhang RR, Liu Y, Sun WB (2014) Spore dispersal of fetid Lysurus mokusin by feces of mycophagous insects. J Chem Ecol 40:893–899.  https://doi.org/10.1007/s10886-014-0481-6 CrossRefPubMedGoogle Scholar
  25. Coetzee JH, Giliomee JH (1985) Insects in association with the inflorescence of Protea repens (L.) (Proteaceae) and their role in pollination. J Ent Soc Sth Afr 48:303–314Google Scholar
  26. Copete JC, Flórez DM, Núñez-Avellaneda LA (2018) Pollination ecology of the Manicaria saccifera (Arecaceae): a rare case of pollinator exclusion. In: Mokwala PW (ed) Pollination in plants. IntechOpen, London, pp 23–37Google Scholar
  27. Corlett TR (2004) Flower visitors and pollination in the Oriental (Indomalayan) region. Biol Rev 79:497–532.  https://doi.org/10.1017/S1464793103006341 CrossRefPubMedGoogle Scholar
  28. Cortes V, Gómez D, Núñez-Avellaneda LA (2018) Relación de visitantes florales con las fases florales de Carludovica palmata (Ruiz & Pav 1798) (Cyclanthaceae) en bosque seco tropical en Colombia. Entomologia mexicana 4:315–321Google Scholar
  29. Davis ALV (1994) Associations of Afrotropical Coleoptera (Scarabaeidae: Aphodiidae: Staphylinidae: Hydrophilidae: Histeridae) with dung and decaying matter: implications for selection of fly-control agents for Australia. J Nat Hist 28:383–399.  https://doi.org/10.1080/00222939400770171 CrossRefGoogle Scholar
  30. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672.  https://doi.org/10.1073/pnas.0709472105 CrossRefPubMedGoogle Scholar
  31. Dieringer G, Espinosa JE (1994) Reproductive ecology of Magnolia schiedeana (Magnoliaceae), a threatened cloud forest tree species in Veracruz, Mexico. Bull Torrey Bot Club 121:154–159CrossRefGoogle Scholar
  32. Dieringer G, Cabrera L, Lara M, Loya L, Reyes-Castillo P (1999) Beetle pollination and floral thermogenicity in Magnolia tamaulipana (Magnoliaceae). Int J Plant Sci 160:64–71.  https://doi.org/10.1086/314099 CrossRefGoogle Scholar
  33. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the Anthropocene. Science 345:401–406.  https://doi.org/10.1126/science.1251817 CrossRefPubMedGoogle Scholar
  34. Dransfield J (1972) The genus Johannesteijsmannia H.E. Moore Jr. Gard Bull 26:63–83Google Scholar
  35. Dransfield J (1979) A Monograph of Ceratolobus (Palmae). Kew Bull 34:1–33CrossRefGoogle Scholar
  36. Drummond DC, Hammond PM (1991) Insects visiting Arum dioscoridis Sm. and A. orientale M. Bieb. Entomol Mon Mag 127:151–155Google Scholar
  37. Drummond DC, Hammond PM (1993) Insects visiting Arum creticum Boiss. & Heldr., A. concinnatum Schott and A. purpureospathum Boyce. Entomol Mon Mag 129:245–252Google Scholar
  38. Echegaray EA, Cloyd RA, Nechols JR (2015) Rove beetle (Coleoptera: Staphylinidae) predation on Bradysia sp. nr. coprophila (Diptera: Sciaridae). J Entomol Sci 50:225–237.  https://doi.org/10.18474/JES14-38.1 CrossRefGoogle Scholar
  39. Endara L, Grimaldi DA, Roy BA (2010) Lord of the flies: pollination of Dracula orchids. Lankesteriana 10:1–11CrossRefGoogle Scholar
  40. Endress PK, Lorence DH (1983) Diversity and evolutionary trends in the floral structure of Tambourissa (Monimiaceae). Plant Syst Evol 143:53–81CrossRefGoogle Scholar
  41. Ervik F, Feil JP (1997) Reproductive biology of the monoecious understory palm Prestoea schultzeana in Amazonian Ecuador. Biotropica 29:309–317CrossRefGoogle Scholar
  42. Ervik F, Tollsten L, Knudsen JT (1999) Floral scent chemistry and pollination ecology in phytelephantoid palms (Arecaceae). Plant Syst Evol 217:279–297CrossRefGoogle Scholar
  43. Escaravage N, Wagner J (2004) Pollination effectiveness and pollen dispersal in a Rhododendron ferrugineum (Ericaceae) population. Plant Biol 6:606–615.  https://doi.org/10.1055/s-2004-821143 CrossRefPubMedGoogle Scholar
  44. Faegri K, Pijl L (1979) The principles of pollination ecology, 3rd edn. Pergamon Press, OxfordGoogle Scholar
  45. Farrell BD (1998) “Inordinate fondness” explained: why are there so many beetles? Science 281:555–559.  https://doi.org/10.1126/science.281.5376.555 CrossRefPubMedGoogle Scholar
  46. Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403.  https://doi.org/10.1146/annurev.ecolsys.34.011802.132347 CrossRefGoogle Scholar
  47. Forsyth A, Alcock J (1990) Ambushing and prey-luring as alternative foraging tactics of the fly-catching rove beetle Leistotrophus versicolor (Coleoptera: Staphylinidae). J Insect Behav 3:703–718CrossRefGoogle Scholar
  48. Frank JH, Barrera R (2010) Natural history of Belonuchus Nordmann spp. and allies (Coleoptera: Staphylinidae) in Heliconia L. (Zingiberales: Heliconiaceae) flower bracts. Insecta Mundi 0110:1–12Google Scholar
  49. Frank JH, Morón MA (2012) Natural history of four species of Platydracus Thomson (Coleoptera: Staphylinidae) in Heliconia bourgaeana Petersen (Zingiberales: Heliconiaceae) flower bracts. Insecta Mundi 0258:1–12Google Scholar
  50. Frank JH, Nadel H (2012) Life cycle and behaviour of Charoxus spinifer and Charoxus major (Coleoptera: Staphylinidae: Aleocharinae), predators of fig wasps (Hymenoptera: Agaonidae). J Nat Hist 46:621–635.  https://doi.org/10.1080/00222933.2011.651641 CrossRefGoogle Scholar
  51. Gamboa-Gaitán MA (1997) Biologia reproductiva de Eschweilera bogotensis (Lecythidaceae), en la cordillera occidental de Colombia. Caldasia 19:479–485Google Scholar
  52. García-Robledo C, Quintero-Marín P, Mora-Kepfer F (2005) Geographic variation and succession of arthropod communities in inflorescences and infructescences of Xanthosoma (Araceae). Biotropica 37:650–656.  https://doi.org/10.1111/j.1744-7429.2005.00082.x CrossRefGoogle Scholar
  53. Gibernau M, Barabé D, Cerdan P, Dejean A (1999) Beetle pollination of Philodendron solimoesense (Araceae) in French Guiana. Int J Plant Sci 160:1135–1143.  https://doi.org/10.1086/314195 CrossRefPubMedGoogle Scholar
  54. Gobbi M, Avesani D, Parolo G, Scupola A, Zanetti A, Bonomi C (2017) Flower-visiting insects observed on the critically endangered alpine plant species Callianthemum kernerianum Freyn ex A. Kerner (Ranunculaceae). J Insect Biodivers 5:1–4.  https://doi.org/10.12976/jib/2017.5.6 CrossRefGoogle Scholar
  55. Gómez JM, Zamora R (2006) Ecological factors that promote the evolution of generalization in pollination systems. In: Waser NM, Ollerton J (eds) Plant–pollinator interactions from specialization to generalization. The University of Chicago Press, Chicago, pp 145–166Google Scholar
  56. Gottsberger G (1989) Comments on flower evolution and beetle pollination in the genera Annona and Rollinia (Annonaceae). Plant Syst Evol 167:189–194CrossRefGoogle Scholar
  57. Gottsberger G (1991) Pollination of some species of the Carludovicoideae, and remarks on the origin and evolution of the Cyclanthaceae. Bot Jahrb Syst 113:221–235Google Scholar
  58. Gottsberger G (1999) Pollination and evolution in neotropical Annonaceae. Plant Species Biol 14:143–152.  https://doi.org/10.1046/j.1442-1984.1999.00018.x CrossRefGoogle Scholar
  59. Gottsberger G (2012) How diverse are Annonaceae with regard to pollination? Bot J Linn Soc 169:245–261.  https://doi.org/10.1111/j.1095-8339.2011.01209.x CrossRefGoogle Scholar
  60. Gottsberger G (2016) Generalist and specialist pollination in basal angiosperms (ANITA grade, basal monocots, magnoliids, Chloranthaceae and Ceratophyllaceae): what we know now. Plant Divers Evol 131:263–362.  https://doi.org/10.1127/pde/2015/0131-0085 CrossRefGoogle Scholar
  61. Gottsberger G, Meinke S, Porembski S (2011) First records of flower biology and pollination in African Annonaceae: Isolona, Piptostigma, Uvariodendron, Monodora and Uvariopsis. Flora 206:498–510.  https://doi.org/10.1016/j.flora.2010.08.005 CrossRefGoogle Scholar
  62. Grimaldi D (1999) The co-radiations of pollinating insects and angiosperms in the Cretaceous. Ann Missouri Bot Gard 86:373–406.  https://doi.org/10.2307/2666181 CrossRefGoogle Scholar
  63. Hahn M, Brühl CA (2016) The secret pollinators: an overview of moth pollination with a focus on Europe and North America. Arthropod–Plant Interact 10:21–28.  https://doi.org/10.1007/s11829-016-9414-3 CrossRefGoogle Scholar
  64. Heiser CB (1962) Some observations on pollination and compatibility in Magnolia. Proc Indiana Acad Sci 72:259–266Google Scholar
  65. Hemachandra KS, Holliday NJ, Mason PG, Soroka JJ, Kuhlmann U (2007) Comparative assessment of the parasitoid community of Delia radicum in the Canadian prairies and Europe: a search for classical biological control agents. Biol Control 43:85–94.  https://doi.org/10.1016/j.biocontrol.2007.07.005 CrossRefGoogle Scholar
  66. Henderson A (1986) A review of pollination studies in the Palmae. Bot Rev 52:221–259CrossRefGoogle Scholar
  67. Henderson A, Pardini R, Rebello JFDS, Vanin S, Almeida D (2000) Pollination of Bactris (Palmae) in an Amazon forest. Brittonia 52:160–171CrossRefGoogle Scholar
  68. Higuchi H, Tsukada M, Yoshida A, Furukawa T (2014) Effective pollinators among Japanese fauna of the insect visitors of Cherimoya (Annona cherimola Mill.). Trop Agr Develop 58:33–36Google Scholar
  69. Hirayama K, Ishida K, Tomaru N (2005) Effects of pollen shortage and self-pollination on seed production of an endangered tree, Magnolia stellata. Ann Bot 95:1009–1015.  https://doi.org/10.1093/aob/mci107 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Hoe YC, Wong SY (2016) Floral biology of Schismatoglottis baangongensis (Araceae) in West Sarawak, Borneo. Plant Syst Evol 302:1239–1252.  https://doi.org/10.1007/s00606-016-1329-z CrossRefGoogle Scholar
  71. Hoe YC, Wong SY, Boyce PC, Wong MH, Chan MKY (2011) Studies on Homalomeneae (Araceae) of Borneo VII: Homalomena debilicrista, a new species from Malaysian Borneo, and observations of its pollination mechanics. Plant Div Evol 129:77–87.  https://doi.org/10.1127/1869-6155/2011/0129-0045 CrossRefGoogle Scholar
  72. Hoe YC, Gibernau M, Wong SY (2018) Diversity of pollination ecology in the Schismatoglottis Calyptrata Complex Clade (Araceae). Plant Biol (Stuttg) 20:563–578.  https://doi.org/10.1111/plb.12687 CrossRefGoogle Scholar
  73. Howard FW, Moore D, Giblin-Davis RM, Abad RG (2001) Insects on palms. CABI, WallingfordCrossRefGoogle Scholar
  74. Hunt T et al (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318:1913–1916.  https://doi.org/10.1126/science.1146954 CrossRefPubMedGoogle Scholar
  75. Inoue T, Kato M, Kakutani T, Suka T, Itino T (1990) Insect-flower relationship in the temperate deciduous forest of Kibune, Kyoto: an overview of the flowering phenology and the seasonal pattern of insect visits. Contr Biol Lab Kyoto Univ 27:377–463Google Scholar
  76. Irmler U, Lipkow E (2018) Effect of environmental conditions on distribution patterns of rove beetles. In: Betz O, Irmler U, Klimaszewski J (eds) Biology of rove beetles (Staphylinidae), life history, evolution, ecology and distribution. Springer, Cham, pp 117–144CrossRefGoogle Scholar
  77. Irmler U, Klimaszewski J, Betz O (2018) Introduction to the biology of rove beetles. In: Betz O, Irmler U, Klimaszewski J (eds) Biology of rove beetles (Staphylinidae), life history, evolution, ecology and distribution. Springer, Cham, pp 1–4Google Scholar
  78. Irvine AK, Armstrong JB (1990) Beetle pollination in tropical forests of Australia. In: Bawa KS, Hadley M (eds) Reproductive ecology of tropical forest plants, vol 7. UNESCO Paris and the Parthenon Publishing Group, New York, pp 135–149Google Scholar
  79. Ishida K (1996) Beetle pollination of Magnolia praecocissima var. borealis. Plant Species Biol 11:199–206CrossRefGoogle Scholar
  80. Jürgens A, Webber AC, Gottsberger G (2000) Floral scent compounds of Amazonian Annonaceae species pollinated by small beetles and thrips. Phytochemistry 55:551–558.  https://doi.org/10.1016/S0031-9422(00)00241-7 CrossRefPubMedGoogle Scholar
  81. Kato M, Kawakita A (2004) Plant–pollinator interactions in New Caledonia influenced by introduced honey bees. Am J Bot 91:1814–1827CrossRefPubMedGoogle Scholar
  82. Kato M, Matsumoto M, Kato T (1993) Flowering phenology and anthophilous insect community in the cool-temperate subalpine forests and meadows at Mt. Kushigata in the central part of Japan. Contr Biol Lab Kyoto Univ 28:119–172Google Scholar
  83. Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant–pollinator interactions. Ann Rev Ecol Syst 29:83–112CrossRefGoogle Scholar
  84. Kevan PG (1975) Pollination and environmental conservation. Environ Conserv 2:293–298CrossRefGoogle Scholar
  85. Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Annu Rev Entomol 28:407–453CrossRefGoogle Scholar
  86. King C, Ballantyne G, Willmer PG (2013) Why flower visitation is a poor proxy for pollination: measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol Evol 4:811–818.  https://doi.org/10.1111/2041-210X.12074 CrossRefGoogle Scholar
  87. Kite GC et al (1998) Inflorescence odours and pollinators of Arum and Amorphophallus (Araceae). In: Owens SJ, Rudall PJ (eds) Reproductive biology. Royal Botanic Gardens, Kew, pp 295–315Google Scholar
  88. Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–313.  https://doi.org/10.1098/rspb.2006.3721 CrossRefPubMedGoogle Scholar
  89. Klimaszewski J, Sturm H (1991) Four new species of the Oxypodine genus Polylobus Solier (Coleoptera: Staphylinidae: Aleocharinae) collected on the flower heads of some high Andean giant rosette plants (Espeletiinae: Asteraceae). Coleopt Bull 45:1–13Google Scholar
  90. Klimaszewski J, Pace R, Center TD, Couture J (2010) A remarkable new species of Himalusa Pace from Thailand (Coleoptera, Staphylinidae, Aleocharinae): phytophagous aleocharine beetle with potential for bio-control of skunkvine-related weeds in the United States. ZooKeys 35:1–12.  https://doi.org/10.3897/zookeys.35.329 CrossRefGoogle Scholar
  91. Klinger R (1983) Eusphaleren, blütenbesuchende Staphyliniden 1) Zur biologie der Käfer (Col., Staphylinidae). Deutsche Entomologische Zeitschrift N F 30:37–44CrossRefGoogle Scholar
  92. Knoll F (1926) Insekten und blumen IV. Die Arum-Blütenstände und ihre besucher. Abh K K der Zool-Bot. Ges Wien 12:383–481Google Scholar
  93. Knudsen JT, Tollsten L, Ervik F (2001) Flower scent and pollination in selected neotropical palms. Plant Biol (Stuttg) 3:642–653CrossRefGoogle Scholar
  94. Koch K (1989) Die Käfer Mitteleuropas, Ökologie E1. Goecke and Evers, KrefeldGoogle Scholar
  95. Koschnitzke C (2015) Pollinators and floral visitors of three Asclepiadoideae (Apocynaceae) taxa in sandy coast vegetation of Rio de Janeiro, Brazil. Natureza on line 13:165–176Google Scholar
  96. Küchmeister H, Silberbauer-Gottsberger I, Gottsberger G (1997) Flowering, pollination, nectar standing crop, and nectaries of Euterpe precatoria (Arecaceae), an Amazonian rain forest palm. Plant Syst Evol 206:71–97CrossRefGoogle Scholar
  97. Küchmeister H, Webber AC, Silberbauer-Gottsberger I, Gottsberger G (1998) A polinização e sua relação com a termogênese em espécies de Arecaceae e Annonaceae da Amazônia Central. Acts Amazon 28:217–245CrossRefGoogle Scholar
  98. Kullenberg B (1953) Observationer över Arum-pollinerare i Libanons kustområde. Svensk Bot Tidskr 47:24–29Google Scholar
  99. Lara CE, Díez MC, Restrepo Z, Núñez LA, Moreno F (2017) Flowering phenology and flower visitors of the Macana Palm Wettinia kalbreyeri (Arecaceae) in an Andean montane forest. Revista Mexicana de Biodiversidad 88:106–112.  https://doi.org/10.1016/j.rmb.2017.01.001 CrossRefGoogle Scholar
  100. Lau JYY, Guo X, Pang C-C, Tang CC, Thomas DC, Saunders RMK (2017) Time-dependent trapping of pollinators driven by the alignment of floral phenology with insect circadian rhythms. Front Plant Sci 8:1119.  https://doi.org/10.3389/fpls.2017.01119 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Listabarth C (1996) Pollination of Bactris by Phyllotrox and Epurea. Implications of the palm breeding beetles on pollination at the community level. Biotropica 28:69–81.  https://doi.org/10.2307/2388772 CrossRefGoogle Scholar
  102. Listabarth C (2001) Palm pollination by bees, beetles and flies: why pollinator taxonomy does not matter. The case of Hyospathe elegans (Arecaceae, Arecoidae, Areceae, Euterpeinae). Plant Species Biol 16:165–181CrossRefGoogle Scholar
  103. Lister BC, Garcia A (2018) Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc Natl Acad Sci USA 115:E10397–E10406.  https://doi.org/10.1073/pnas.1722477115 CrossRefPubMedGoogle Scholar
  104. López-García MM, Marín-Gómez OH (2018) Description and notes on natural history of a new species of Parosus Sharp, 1887 (Coleoptera, Staphylinidae, Oxytelinae) living in floral bracts of Columnea medicinalis L. (Gesneriaceae). Zootaxa 4394:559–566.  https://doi.org/10.11646/zootaxa.4394.4.6 CrossRefPubMedGoogle Scholar
  105. López-García MM, Méndez-Rojas DM, Cárdenas RG (2011) Staphylinidae y Nitidulidae (Coleoptera) asociados a inflorescencias de Etlingera elatior (Zingiberaceae). Rev Colomb Entomol 37:357–359Google Scholar
  106. Lora J, Larranaga N, Hormaza JI (2018) Genetics and breeding of fruit crops in the Annonaceae family: Annona spp. and Asimina spp. In: Al-Khayru JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: fruits, vol 3. Springer, Cham, pp 651–672CrossRefGoogle Scholar
  107. Lorence DH (1985) A monograph of the Monimiaceae (Laurales) in the Malagasy region (Southwest Indian Ocean). Ann Missouri Bot Gard 72:1–165.  https://doi.org/10.2307/2399135 CrossRefGoogle Scholar
  108. Losapio G et al (2016) Feedback effects between plant and flower-visiting insect communities along a primary succession gradient. Arthropod–Plant Interact 10:485–495.  https://doi.org/10.1007/s11829-016-9444-x CrossRefGoogle Scholar
  109. Luo SX, Zhang LJ, Yuan S, Ma ZH, Zhang DX, Renner SS (2018) The largest early-diverging angiosperm family is mostly pollinated by ovipositing insects and so are most surviving lineages of early angiosperms. Proc R Soc B 285:20172365.  https://doi.org/10.1098/rspb.2017.2365 CrossRefPubMedGoogle Scholar
  110. Madison M (1981) Notes on Caladium (Araceae) and its allies. Selbyana 5:342–377Google Scholar
  111. Maia ACD, Schlindwein C, Navarro DMAF, Gibernau M (2010) Pollination of Philodendron acutatum (Araceae) in the Atlantic forest of northeastern Brazil: a single scarab beetle species guarantees high fruit set. Int J Plant Sci 171:740–748.  https://doi.org/10.1086/654846 CrossRefGoogle Scholar
  112. Marín-Gómez OH, López-García MM, Vanderhuck MG (2016) Floral visitors of Inga marinata Willd. (Mimosaceae) in a coffee agroecosystem of Quindío, Colombia. Trop Ecol 57:649–654Google Scholar
  113. Mawdsley JR (2003) The importance of species of Dasytinae (Coleoptera: Melyridae) as pollinators in western North America. Coleopt Bull 57:154–160CrossRefGoogle Scholar
  114. McCall AC, Irwin RE (2006) Florivory: the intersection of pollination and herbivory. Ecol Lett 9:1351–1365.  https://doi.org/10.1111/j.1461-0248.2006.00975.x CrossRefPubMedGoogle Scholar
  115. Medan D (1994) Reproductive biology of Frangula alnus (Rhamnaceae) in southern Spain. Plant Syst Evol 193:173–186CrossRefGoogle Scholar
  116. Meeuse BJD, Hatch MH (1960) Beetle pollination in Drancunculus and Sauromatum (Araceae). Coleopt Bull 14:70–74Google Scholar
  117. Mertens JEJ, Tropek R, Dzekashu FF, Maicher V, Fokam EB, Janeček S (2017) Communities of flower visitors of Uvariopsis dioica (Annonaceae) in lowland forests of Mt. Cameroon, with notes on its potential pollinators. Afr J Ecol 56:146–152.  https://doi.org/10.1111/aje.12429 CrossRefGoogle Scholar
  118. Momose K et al (1998) Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia. I. Characteristics of the plant–pollinator community in a lowland dipterocarp forest. Am J Bot 85:1477–1501CrossRefPubMedGoogle Scholar
  119. Moore MR, Jameson ML (2013) Floral associations of cyclocephaline scarab beetles. J Insect Sci 13:1–43.  https://doi.org/10.1673/031.013.10001 CrossRefGoogle Scholar
  120. National Research Council (2007) Status of pollinators in North America. The National Academies Press, Washington D.C.Google Scholar
  121. Nauheimer L, Boyce PC (2013) Englerarum (Araceae, Aroideae): a new genus supported by plastid and nuclear phylogenies. Plant Syst Evol 300:709–715.  https://doi.org/10.1007/s00606-013-0914-7 CrossRefGoogle Scholar
  122. Newton AF (2015) Beetles (Coleoptera) of Peru: a survey of families. Staphylinidae Latreille, 1802. J Kansas Entomol Soc 88:283–304.  https://doi.org/10.2317/kent-88-02-283-304.1 CrossRefGoogle Scholar
  123. Núñez-Avellaneda LA, Rojas-Robles R (2008) Biologia reproductiva y ecologia de la polinización de la palma milpesos Oenocarpus batau a en los Andes Colombianos. Caldasia 30:101–125Google Scholar
  124. Oguri S, Sakamaki K, Sakamoto H, Kubota K (2019) Compositional changes of the floral scent volatile emissions from Asian skunk cabbage (Symplocarpus renifolius, Araceae) over flowering sex phases. Phytochem Anal 30:139–147.  https://doi.org/10.1002/pca.2799 CrossRefPubMedGoogle Scholar
  125. Ollerton J (2017) Pollinator diversity: distribution, ecological function, and conservation. Annu Rev Ecol Evol Syst 48:353–376.  https://doi.org/10.1146/annurev-ecolsys-110316-022919 CrossRefGoogle Scholar
  126. Ollerton J, Johnson SD, Cranmer L, Kellie S (2003) The pollination ecology of an assemblage of grassland Asclepiads in South Africa. Ann Bot 92:807–834.  https://doi.org/10.1093/aob/mcg206 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Ollerton J, Killick A, Lamborn E, Watts S, Whiston M (2007) Multiple meanings and modes: on the many ways to be a generalist flower. Taxon 56:717–728CrossRefGoogle Scholar
  128. Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326.  https://doi.org/10.1111/j.1600-0706.2010.18644.x CrossRefGoogle Scholar
  129. Ollerton J, Rech AR, Waser NM, Price MV (2015) Using the literature to test pollination syndromes - some methodological cautions. J Pollinat Ecol 16:119–125Google Scholar
  130. Patt JM, Merchant MW, Williams DRE, Meeuse BJD (1989) Pollination biology of Platanthera stricta (Orchidaceae) in Olympic National Park, Washington. Am J Bot 76:1097–1106CrossRefGoogle Scholar
  131. Pellmyr O (1992) Evolution of insect pollination and angiosperm diversification. Trends Ecol Evol 7:46–49CrossRefPubMedGoogle Scholar
  132. Pellmyr O, Patt JM (1986) Function of olfactory and visual stimuli in pollination of Lysichiton Americanum (Araceae) by a staphylinid beetle. Madroño 33:47–54Google Scholar
  133. Peña JE, Nadel H, Barbosa-Pereira M, Smith D (2002) Pollinators and pests of Annona species. In: Peña JE, Sharp JL, Wysoki M (eds) Tropical fruit pests and pollinators: biology, economic importance, natural enemies and control. CABI, Oxfordshire, pp 197–221CrossRefGoogle Scholar
  134. Pérez AEN (2014) Interacciones y diversidad de estafilínidos (Coleoptera: Staphylinidae) asociados a inflorescencias de palmas silvestres en el Pacífico colombiano. Dissertation, Universidad Nacional de ColombiaGoogle Scholar
  135. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353.  https://doi.org/10.1016/j.tree.2010.01.007 CrossRefPubMedGoogle Scholar
  136. Procheş S, Johnson SD (2009) Beetle pollination of the fruit-scented cones of the South African cycad Stangeria eriopus. Am J Bot 96:1722–1730.  https://doi.org/10.3732/ajb.0800377 CrossRefPubMedGoogle Scholar
  137. Quilichini A, Macquart D, Barabé D, Albre J, Gibernau M (2010) Reproduction of the West Mediterranean endemic Arum pictum (Araceae) on Corsica. Plant Syst Evol 287:179–187.  https://doi.org/10.1007/s00606-010-0312-3 CrossRefGoogle Scholar
  138. Rader R et al (2016) Non-bee insects are important contributors to global crop pollination. Proc Natl Acad Sci USA 113:146–151.  https://doi.org/10.1073/pnas.1517092112 CrossRefPubMedGoogle Scholar
  139. Ramsey MW (1988) Differences in pollinator effectiveness of birds and insects visiting Banksia menziesii (Proteaceae). Oecologia 76:119–124CrossRefPubMedGoogle Scholar
  140. Ratnayake RMCS, Gunatilleke IAUN, Wijesundara DSA, Saunders RMK (2006) Reproductive biology of two sympatric species of Polyalthia (Annonaceae) in Sri Lanka. I. Pollination by curculionid beetles. Int J Plant Sci 167:483–493CrossRefGoogle Scholar
  141. Reverté S, Retana J, Gómez JM, Bosch J (2016) Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators. Ann Bot 118:249–257.  https://doi.org/10.1093/aob/mcw103 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Rosas-Guerrero V, Aguilar R, Martén-Rodríguez S, Ashworth L, Lopezaraiza-Mikel M, Bastida JM, Quesada M (2014) A quantitative review of pollination syndromes: do floral traits predict effective pollinators? Ecol Lett 17:388–400.  https://doi.org/10.1111/ele.12224 CrossRefPubMedGoogle Scholar
  143. Sahli HF, Conner JK (2006) Characterizing ecological generalization in plant-pollination systems. Oecologia 148:365–372.  https://doi.org/10.1007/s00442-006-0396-1 CrossRefPubMedGoogle Scholar
  144. Sakai S (2002) Aristolochia spp. (Aristolochiaceae) pollinated by flies breeding on decomposing flowers in Panama. Am J Bot 89:527–534CrossRefPubMedGoogle Scholar
  145. Sakai S, Inoue T (1999) A new pollination system: dung-beetle pollination discovered in Orchidantha inouei (Lowiaceae, Zingiberales) in Sarawak, Malaysia. Am J Bot 86:56–61CrossRefPubMedGoogle Scholar
  146. Saunders RMK (2012) The diversity and evolution of pollination systems in Annonaceae. Bot J Linn Soc 169:222–244.  https://doi.org/10.1111/j.1095-8339.2011.01208.x CrossRefGoogle Scholar
  147. Sayers TDJ (2019) The ecology and evolution of plant–pollinator interactions in Australian Typhonium (Araceae). Dissertation, The University of MelbourneGoogle Scholar
  148. Scheerpeltz O (1927) Ein Staphylinide als blütenschädling (Col.). Koleopterol Rundsch 13:1–9Google Scholar
  149. Schiestl FP, Dötterl S (2012) The evolution of floral scent and olfactory preferences in pollinators: coevolution or pre-existing bias? Evolution 66:2042–2055.  https://doi.org/10.1111/j.1558-5646.2012.01593.x CrossRefPubMedGoogle Scholar
  150. Seres A, Ramírez N (1995) Biologia floral y polinizacion de algunas Monocotiledoneas de un bosque nublado Venezolano. Ann Missouri Bot Gard 82:61–81.  https://doi.org/10.2307/2399981 CrossRefGoogle Scholar
  151. Setsuko S, Nagamitsu T, Tomaru N (2013) Pollen flow and effects of population structure on selfing rates and female and male reproductive success in fragmented Magnolia stellata populations. BMC Ecol 13:1–12.  https://doi.org/10.1186/1472-6785-13-10 CrossRefGoogle Scholar
  152. Sharma MV, Shivanna KR (2011) Pollinators, pollination efficiency and fruiting success in a wild nutmeg, Myristica dactyloides. J Trop Ecol 27:405–412.  https://doi.org/10.1017/S0266467411000174 CrossRefGoogle Scholar
  153. Silberbauer-Gottsberger I, Gottsberger G, Webber AC (2003) Morphological and functional flower characteristics of New and Old World Annonaceae with respect to their mode of pollination. Taxon 52:1–18CrossRefGoogle Scholar
  154. Sivadasan M, Kavalan R (2005) Flowering phenology and beetle pollination in Theriophonum infaustum N.E.Br. (Araceae). Aroideana 28:104–112Google Scholar
  155. Ślipiński SA, Leschen RAB, Lawrence JF (2011) Order Coleoptera Linnaeus, 1758. In: Z-Q Zhang (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148:203–208CrossRefGoogle Scholar
  156. Smith-Ramírez C, Martinez P, Nuñez M, González C, Armesto JJ (2005) Diversity, flower visitation frequency and generalism of pollinators in temperate rain forests of Chiloé Island, Chile. Bot J Linn Soc 147:399–416.  https://doi.org/10.1111/j.1095-8339.2005.00388.x CrossRefGoogle Scholar
  157. Stavert JR, Liñán-Cembrano G, Beggs JR, Howlett BG, Pattemore DE, Bartomeus I (2016) Hairiness: the missing link between pollinators and pollination. PeerJ 4:e2779.  https://doi.org/10.7717/peerj.2779 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Stebbins GL (1970) Adaptive radiation of reproductive characteristics in angiosperms, 1: Pollination mechanisms. Ann Rev Ecol Syst 1:307–326CrossRefGoogle Scholar
  159. Steel WO (1970) The larvae of the genera of the Omaliinae (Coleoptera: Staphylinidae) with particular reference to the British fauna. Trans R Ent Soc Lond 122:1–47.  https://doi.org/10.1111/j.1365-2311.1970.tb00524.x CrossRefGoogle Scholar
  160. Steenhuisen S-L, Johnson SD (2012) Evidence for beetle pollination in the African grassland sugarbushes (Protea: Proteaceae). Plant Syst Evol 298:857–869.  https://doi.org/10.1007/s00606-012-0589-5 CrossRefGoogle Scholar
  161. Steinbach K, Gottsberger G (1994) Phenology and pollination biology of five Ranunculus species in Giessen, central Germany. Phyton (Horn Austria) 34:203–218Google Scholar
  162. Steinhoff G (1980) Daily and seasonal interactions between salmonberry (Rubus spectabilis) and bumblebees (Bombus sitkensis) in southwestern British Columbia. Dissertation, The University of British ColumbiaGoogle Scholar
  163. Straarup M, Hoppe LE, Pooma R, Barfod AS (2018) The role of beetles in the pollination of the mangrove palm Nypa fruticans. Nord J Bot 36:e01967.  https://doi.org/10.1111/njb.01967 CrossRefGoogle Scholar
  164. Takano KT, Repin R, Mohamed MB, Toda MJ (2012) Pollination mutualism between Alocasia macrorrhizos (Araceae) and two taxonomically undescribed Colocasiomyia species (Diptera: Drosophilidae) in Sabah, Borneo. Plant Biol 14:555–564.  https://doi.org/10.1111/j.1438-8677.2011.00541.x CrossRefPubMedGoogle Scholar
  165. Thayer MK (2016) 14.7 Staphylinidae Latreille, 1802. In: Beutel RG, Leschen RAB (eds) Handbook of Zoology, Arthropoda: Insecta; Coleoptera, beetles. Morphology and systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim), 2nd edn. De Gruyter, Berlin, pp 394–442Google Scholar
  166. Thien LB (1974) Floral biology of Magnolia. Am J Bot 61:1037–1045CrossRefGoogle Scholar
  167. Thien LB, Azuma H, Kawano S (2000) New perspectives on the pollination biology of basal angiosperms. Int J Plant Sci 161:S225–S235.  https://doi.org/10.1086/317575 CrossRefGoogle Scholar
  168. Tsukada M, Higuchi H, Furukawa T, Yoshida A (2005) Flower visitors to cherimoya, Annona cherimola (Magnoliales: Annonaceae) in Japan. Appl Entomol Zool 40:317–324.  https://doi.org/10.1303/aez.2005.317 CrossRefGoogle Scholar
  169. Uemura S, Ohkawara K, Kudo G, Wada N, Higashi S (1993) Heat-production and cross-pollination of the Asian Skunk Cabbage Symplocarpus renifolius (Araceae). Am J Bot 80:635–640CrossRefGoogle Scholar
  170. Urru I, Stökl J, Linz J, Krügel T, Stensmyr MC, Hansson BS (2010) Pollination strategies in Cretan Arum lilies. Biol J Linn Soc 101:991–1001.  https://doi.org/10.1111/j.1095-8312.2010.01537.x CrossRefGoogle Scholar
  171. Urru I, Stensmyr MC, Hansson BS (2011) Pollination by brood-site deception. Phytochemistry 72:1655–1666.  https://doi.org/10.1016/j.phytochem.2011.02.014 CrossRefPubMedGoogle Scholar
  172. Vázquez DP, Morris WF, Jordano P (2005) Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecol Lett 8:1088–1094.  https://doi.org/10.1111/j.1461-0248.2005.00810.x CrossRefGoogle Scholar
  173. Vislobokov NA, Galinskaya TV (2018) Pollination ecology of two co-occurring species of Balanophora: differences in range of visitors and pollinators. Int J Plant Sci 179:341–349.  https://doi.org/10.1086/697320 CrossRefGoogle Scholar
  174. Vislobokov NA, Nuraliev MS, Galinskaya TV (2017) Pollination ecology of Lowiaceae (Zingiberales): nocturnal carrion-beetle pollination of Orchidantha virosa. Int J Plant Sci 178:302–312.  https://doi.org/10.1086/690910 CrossRefGoogle Scholar
  175. Vizentin-Bugoni J, Maruyama PK, Souza CS, Ollerton J, Rech AR, Sazima M (2018) Plant–pollinator networks in the tropics: a review. In: Dáttilo W, Rico-Gray V (eds) Ecological networks in the tropics. Springer, Cham, pp 73–91CrossRefGoogle Scholar
  176. Wang B, Chen G, Li C, Sun W (2017) Floral characteristics and pollination ecology of Manglietia ventii (Magnoliaceae), a plant species with extremely small populations (PSESP) endemic to South Yunnan of China. Plant Divers 39:52–59.  https://doi.org/10.1016/j.pld.2017.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  177. Wardhaugh CW (2015) How many species of arthropods visit flowers? Arthropod–Plant Interact 9:547–565.  https://doi.org/10.1007/s11829-015-9398-4 CrossRefGoogle Scholar
  178. Wardhaugh CW, Stork NE, Edwards W, Grimbacher PS (2012) The overlooked biodiversity of flower-visiting invertebrates. PLoS ONE 7:e45796.  https://doi.org/10.1371/journal.pone.0045796 CrossRefPubMedPubMedCentralGoogle Scholar
  179. Wardhaugh CW, Edwards W, Stork NE (2013a) Variation in beetle community structure across five microhabitats in Australian tropical rainforest trees. Insect Conserv Divers 6:463–472.  https://doi.org/10.1111/icad.12001 CrossRefGoogle Scholar
  180. Wardhaugh CW, Stork NE, Edwards W (2013b) Specialization of rainforest canopy beetles to host trees and microhabitats: not all specialists are leaf-feeding herbivores. Biol J Linn Soc 109:215–228CrossRefGoogle Scholar
  181. Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060.  https://doi.org/10.2307/2265575 CrossRefGoogle Scholar
  182. Washitani I, Okayama Y, Sato K, Takahashi H, Ohgushi T (1996) Spatial variation in female fertility related to interactions with flower consumers and pathogens in a forest metapopulation of Primula sieboldii. Res Popul Ecol 38:249–256CrossRefGoogle Scholar
  183. Webber AC (1996) Biologia floral, polinização e aspectos fenológicos de algumas Annonaceae na Amazônia Central. Dissertation, Manaus: Instituto Nacional de Pesquisas da Amazônia and Fundação Universidade do AmazonasGoogle Scholar
  184. Webber AC, Gottsberger G (1995) Floral biology and pollination of Bocageopsis multiflora and Oxandra euneura in Central Amazonia, with remarks on the evolution of stamens in Annonaceae. Feddes Repert 106:515–524CrossRefGoogle Scholar
  185. Weiblen GD, Brehm BG (1996) Reproductive strategies and barriers to hybridization between Tellima grandiflora and Tolmeia menziesii (Saxifragaceae). Am J Bot 83:910–918CrossRefGoogle Scholar
  186. Whigham D (1974) An ecological life history study of Uvularia perfoliata L. Am Midl Nat 91:343–359.  https://doi.org/10.2307/2424326 CrossRefGoogle Scholar
  187. Willemstein SC (1987) An evolutionary basis for pollination ecology. E.J. Brill/Leiden University Press, LeidenGoogle Scholar
  188. Williams G, Adams P (2010) The flowering of Australia’s rainforests: a plant and pollination miscellany. CSIRO Publishing, CollingwoodCrossRefGoogle Scholar
  189. Willmer P (2011) Pollination and floral ecology. Princeton Univeristy Press, New JerseyCrossRefGoogle Scholar
  190. Willmer PG, Cunnold H, Ballantyne G (2017) Insights from measuring pollen deposition: quantifying the pre-eminence of bees as flower visitors and effective pollinators. Arthropod–Plant Interact 11:411–425.  https://doi.org/10.1007/s11829-017-9528-2 CrossRefGoogle Scholar
  191. Willson MF, Hennon PE (1997) The natural history of western skunk cabbage (Lysichiton americanum) in southeast Alaska. Can J Bot 75:1022–1025CrossRefGoogle Scholar
  192. Woodcock TS, Larson BMH, Kevan PG, Inouye DW, Lunau K (2014) Flies and flowers II: floral attractants and rewards. J Pollinat Ecol 12:63–94Google Scholar
  193. Worboys SJ, Jackes BR (2005) Pollination processes in Idiospermum australiense (Calycanthaceae), an arborescent basal angiosperm of Australia’s tropical rain forests. Plant Syst Evol 251:107–117.  https://doi.org/10.1007/s00606-004-0226-z CrossRefGoogle Scholar
  194. Yamamoto S, Ikeda K, Kamitani S (2014) Species diversity and community structure of rove beetles (Coleoptera: Staphylinidae) attracted to dung of sika deer in coniferous forests of southwest Japan. Entomol Sci 17:52–58.  https://doi.org/10.1111/ens.12036 CrossRefGoogle Scholar
  195. Young OP (1998) Observations of rove beetle (Coleoptera: Staphylinidae) predation on dung beetles (Scarabaeidae) in Panama. Coleopt Bull 52:217–221Google Scholar
  196. Zamora R (1999) Conditional outcomes of interactions: the pollinator-prey conflict of an insectivorous plant. Ecology 80:786–795.  https://doi.org/10.2307/177017 CrossRefGoogle Scholar
  197. Zhang X, Zhou HZ (2013) How old are the rove beetles (Insecta: Coleoptera: Staphylinidae) and their lineages? Seeking an answer with DNA. Zool Sci 30:490–501.  https://doi.org/10.2108/zsj.30.490 CrossRefPubMedGoogle Scholar
  198. Zych M, Goldstein J, Roguz K, Stpiczyńka M (2013) The most effective pollinator revisited: pollen dynamics in a spring-flowering herb. Arthropod–Plant Interact 7:315–322.  https://doi.org/10.1007/s11829-013-9246-3 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Ecosystem and Forest SciencesThe University of MelbourneRichmondAustralia
  2. 2.Department of Ecology, Environment and EvolutionLa Trobe UniversityMelbourneAustralia

Personalised recommendations