Interactions between oil-collecting bees and Krameria grandiflora (Krameriaceae) with emphasis on the role of specialized floral traits in the mutual fit

  • Liedson Tavares CarneiroEmail author
  • Camila Bárbara Danny Silva André
  • Adriana Takahasi
  • Isabel Alves-dos-Santos
Review Paper


Oil-producing flowers have evolved specialized traits along with the ability to secrete oil as reward, leading to the expectation of a narrow relationship between floral architecture and oil-collecting behaviours of pollinators. Krameriaceae flowers have a showy calyx and a less conspicuous dimorphic corolla modified into a pair of elaiophores that secrete the oil, and a group of petaloid petals that, among oil-collecting bees, are used by only Centris (Centridini) during the oil gathering. A manipulative experiment consisted of excising these floral parts to test the prediction that these structures contribute to successful oil gathering by the bees and plant reproduction. We surveyed the oil-collecting bees associated with the Krameria grandiflora A. St.-Hil. across its distribution range and performed the experiment in populations associated with two different oil-collecting bee taxa—Caenonomada (Tapinotaspidini) and Centris, the main pollinators. Although predicted to mediate the floral mechanical fit with Centris, the absence of the petaloid petals had a neutral effect on both oil-gathering behaviour and seed set, when comparing Caenonomada and Centris. A negative effect on these responses was found when the elaiophores were excised, indicating that these glands have greater importance than the petals related to the mutual fit between flowers and pollinators. However, the petaloid petals seemed to function jointly with the sepals in pollinator attraction. When the sepals were excised, only Centris behaviour was affected, but not that of Caenonomada, indicating potentially divergent selective pressures on the calyx. In addition, we provide a novel oil host plant for several oil-collecting bees.


Centris Elaiophores Mechanical fit Petaloid Pollinator matching Tapinotaspidini 



We thank ICMBio/SISBIO, for allowing us to conduct the study in the Conservation Units, and the Corumbá City Council, for letting us to work at the Piraputangas Park. We also thank Dr. Felipe Vivallo (National Museum/UFRJ, Rio de Janeiro, Brazil), for identifying the specimens of Centridini, Dr. Antônio Aguiar (UnB, Brasília, Brazil), for identifying the specimens of Tapinotaspidini, Dr. Sheina Koffler (IB/USP, São Paulo, Brazil), for the helpful discussions on the research, MSc. Felipe Libran Embid (Georg-August-Universität Göttingen, Göttingen, Germany), for helping with the fieldwork, two anonymous reviewers and the editor, for the constructive criticism and support to the manuscript. We are grateful for the awarded scholarship grants and financial support for LTC and IA by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, 2013/00181-5 and 04/00274-4).

Author contributions

L.T.C. and I.A. conceived the general outline of the study; L.T.C. designed the methodology, collected the samples with the support of C.B.D.S.A., and led the analysis and writing of the manuscript with substantial contributions by A.T. and I.A. All the authors contributed critically to the drafts and gave final approval for publication.

Supplementary material

11829_2019_9689_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 19 KB)
11829_2019_9689_MOESM2_ESM.docx (22 kb)
Supplementary material 2 (DOCX 24 KB)
11829_2019_9689_MOESM3_ESM.docx (16 kb)
Supplementary material 3 (DOCX 17 KB)

Supplementary material 4 (MP4 73093 KB)


  1. Aguiar AJC, Melo GAR (2009) Notes on oil sources for the bee genus Caenonomada (Hymenoptera, Apidae, Tapinotaspidini). Rev Bras Entomol 53:154–156. CrossRefGoogle Scholar
  2. Alves-dos-Santos I, Machado IC, Gaglianone MC (2007) História natural das abelhas coletoras de óleo. Oecologia Bras 11:544–557. CrossRefGoogle Scholar
  3. Anderson WR (1979) Floral conservatism in neotropical Malpighiaceae. Biotropica 11:219. CrossRefGoogle Scholar
  4. Bronstein JL, Alarcón R, Geber M (2006) The evolution of plant-insect mutualisms. New Phytol 172:412–428. CrossRefGoogle Scholar
  5. Buchmann SL (1987) The ecology of oil flowers and their bees. Annu Rev Ecol Syst 18:343–369. CrossRefGoogle Scholar
  6. Cane JH (1987) Estimation of bee size using intertegular span (Apoidea). J Kansas Entomol Soc 60:145–147Google Scholar
  7. Capistrano SHB, Loiola MIB (2015) Flora do Ceará. Brasil: Krameriaceae. Rodriguésia 66:905–912. CrossRefGoogle Scholar
  8. Carlquist S (2005) Wood anatomy of Krameriaceae with comparisons with Zygophyllaceae: phylesis, ecology and systematics. Bot J Linn Soc 149:257–270. CrossRefGoogle Scholar
  9. Carneiro LT, Aguiar AJC, Martins CF et al (2015) Krameria tomentosa oil flowers and their pollinators: bees specialized on trichome elaiophores exploit its epithelial oil glands. Flora 215:1–8. CrossRefGoogle Scholar
  10. Cocucci AA, Sérsic A, Roig-Alsina A (2000) Oil-collecting structures in Tapinotaspidini: their diversity, function and probable origin. Mitteilungen der Münchner Entomol Gesellschaft 90:51–74Google Scholar
  11. Cuartas-Domínguez M, Medel R (2010) Pollinator-mediated selection and experimental manipulation of the flower phenotype in Chloraea bletioides. Funct Ecol 24:1219–1227. CrossRefGoogle Scholar
  12. Davis CC, Schaefer H, Xi Z et al (2014) Long-term morphological stasis maintained by a plant-pollinator mutualism. Proc Natl Acad Sci 111:5914–5919. CrossRefGoogle Scholar
  13. Faegri K, Van der Pijl L (1979) The principles of pollination ecology. Pergamon, OxfordGoogle Scholar
  14. Fernandes M, Giulietti AM, De Oliveira RP, De Lima CT (2014) Flora da Bahia: Krameriaceae. SITIENTIBUS série Ciências Biológicas 14:1–6.
  15. Ferreira CA, Torezan-Silingardi HM (2013) Implications of the floral herbivory on Malpighiacea plant fitness: visual aspect of the flower affects the attractiveness to pollinators. Sociobiology 60:323–328. CrossRefGoogle Scholar
  16. Ferreiro G, Baranzelli MC, Sérsic AN, Cocucci AA (2015) Clinal variability of oil and nectar rewards in Monttea aphylla (Plantaginaceae): relationships with pollinators and climatic factors in the Monte Desert. Bot J Linn Soc 178:314–328. CrossRefGoogle Scholar
  17. Gimenes M, Lobão CDS (2006) A polinização de Krameria bahiana B.B. Simpson (Krameriaceae) por abelhas (Apidae) na restinga, BA. Neotrop Entomol 35:440–445. CrossRefGoogle Scholar
  18. Harder LD, Johnson SD (2009) Darwin’s beautiful contrivances: evolutionary and functional evidence for floral adaptation. New Phytol 183:530–545. CrossRefGoogle Scholar
  19. Heinze G, Schemper M (2002) A solution to the problem of separation in logistic regression. Stat Med 21:2409–2419. CrossRefGoogle Scholar
  20. Herrera CM (2001) Deconstructing a floral phenotype: do pollinators select for corolla integration in Lavandula latifolia? J Evol Biol 14:574–584. CrossRefGoogle Scholar
  21. Herrera CM, Castellanos MC, Medrano M (2006) Geographical context of floral evolution: towards an improved research programme in floral diversification. In: Harder LD, Barrett SCH (eds) Ecology and evolution of flowers. Oxford Univ. Press, Oxford. pp 278–294Google Scholar
  22. Landis JB, Barnett LL, Hileman LC (2012) Evolution of petaloid sepals independent of shifts in B-class MADS box gene expression. Dev Genes Evol 222:19–28. CrossRefGoogle Scholar
  23. Machado IC, Vogel S, Lopes a V (2002) Pollination of Angelonia cornigera Hook. (Scrophulariaceae) by long-legged, oil-collecting bees in NE Brazil. Plant Biol 4:352–359. CrossRefGoogle Scholar
  24. Martins AC, Aguiar AJC, Alves-dos-Santos I (2013) Interaction between oil-collecting bees and seven species of Plantaginaceae. Flora 208:401–411. CrossRefGoogle Scholar
  25. Martins AC, Melo GAR, Renner SS (2015) Gain and loss of specialization in two oil-bee lineages, Centris and Epicharis (Apidae). Evolution 69:1835–1844. CrossRefGoogle Scholar
  26. Melo GAR, Gaglianone MC (2005) Females of Tapinotaspoides, a genus in the oil-collecting bee tribe Tapinotaspidini, collect secretions from non-floral trichomes (Hymenoptera, Apidae). Rev Bras Entomol 49:167–168. CrossRefGoogle Scholar
  27. Milby TH (1971) Floral anatomy of Krameria lanceolata. Am J Bot 58:569. CrossRefGoogle Scholar
  28. Neff JL, Simpson BB (1981) Oil-collecting structures in the Anthophoridae (Hymenoptera): morphology, function, and use in systematics. J Kansas Entomol Soc 54:95–123Google Scholar
  29. Neff JL, Simpson BB (2017) Vogel’s great legacy: the oil flower and oil-collecting bee syndrome. Flora 232:104–116. CrossRefGoogle Scholar
  30. Possobom CCF, Machado SR (2017) Elaiophores: their taxonomic distribution, morphology and functions. Acta Bot Brasilica 31:503–524. CrossRefGoogle Scholar
  31. Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Timber Press, PortlandGoogle Scholar
  32. Quiñones AE, Wcislo WT (2015) Cryptic extended brood care in the facultatively eusocial sweat bee Megalopta genalis. Insectes Soc 62:307–313. CrossRefGoogle Scholar
  33. R Core Team (2018) R: a language and environment for statistical computingGoogle Scholar
  34. Rasmussen C, Olesen JM (2000) Oil flowers and oil-collecting bees. Scand Assoc Pollinat Ecol Honours Knut Faegri 39:23–31. Google Scholar
  35. Renner SS, Schaefer H (2010) The evolution and loss of oil-offering flowers: new insights from dated phylogenies for angiosperms and bees. Philos Trans R Soc B Biol Sci 365:423–435. CrossRefGoogle Scholar
  36. Roig-Alsina A (1997) A generic study of the bees of the tribe Tapinotaspidini, with notes on the evolution of their oil-collecting structures (Hymenoptera, Apidae). Mitteilungen der Münchner. Entomol Gesellschaft 87:3–21Google Scholar
  37. Sabino WO, Silva CI, Alves-dos-Santos I (2017) Mating system and sleeping behaviour of the male and female Centris (Paracentris) burgdorfi Friese (Apidae, Centridini). J Insect Behav 30:103–118. CrossRefGoogle Scholar
  38. Sabino WO, Alves-dos-Santos I, da Silva CI (2018) Versatility of the trophic niche of Centris (Paracentris) burgdorfi (Apidae, Centridini). Arthropod Plant Interact. Google Scholar
  39. Sazima M, Sazima I (1989) Oil-gathering bees visit flowers of eglandular morphs of the oil-producing Malpighiaceae. Bot Acta 102:106–111. CrossRefGoogle Scholar
  40. Schäffler I, Steiner KE, Haid M et al (2015) Diacetin, a reliable cue and private communication channel in a specialized pollination system. Sci Rep 5:12779. CrossRefGoogle Scholar
  41. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. CrossRefGoogle Scholar
  42. Sheahan MC, Chase MW (1996) A phylogenetic analysis of Zygophyllaceae R. Br. based on morphological, anatomical and rbcL DNA sequence data. Bot J Linn Soc 122:279–300. Google Scholar
  43. Simpson BB (1982) Krameria (Krameriaceae) flowers: orientation and elaiophore morphology. Taxon 31:517. CrossRefGoogle Scholar
  44. Simpson BB (1989) Krameriaceae. Flora Neotrop 49:1–108Google Scholar
  45. Simpson BB, Neff JL (1981) Floral rewards: alternatives to pollen and nectar. Ann Missouri Bot Gard 68:301. CrossRefGoogle Scholar
  46. Simpson BB, Weeks A, Helfgott DM, Larkin LL (2004) Species relationships in Krameria (Krameriaceae) based on ITS sequences and morphology: implications for character utility and biogeography. Syst Bot 29:97–108. CrossRefGoogle Scholar
  47. Steiner KE, Whitehead VB (1990) Pollinator adaptation to oil-secreting flowers—Rediviva and Diascia. Evolution 44:1701–1707. Google Scholar
  48. Vogel S (1971) Ölproduzierende Blumen, die durch ölsammelnde Bienen bestäubt werden. Naturwissenschaften 58:58–58. CrossRefGoogle Scholar
  49. Vogel S (1974) Olblumen und olsammelnde Bienen. Trop Subtrop Pflwelt 7:1–267Google Scholar
  50. Vogel S (1990) History of the Malpighiaceae in the light of pollination ecology. Mem N Y Bot Gard 55:130–142Google Scholar
  51. Vogel S, Machado IC (1991) Pollination of four sympatric species of Angelonia (Scrophulariaceae) by oil-collecting bees in NE. Brazil. Plant Syst Evol 178:153–178. Google Scholar
  52. Von Helversen D, Von Helversen O (1999) Acoustic guide in bat-pollinated flower. Nature 398:759–760. CrossRefGoogle Scholar
  53. Werneck FP, Costa GC, Colli GR et al (2011) Revisiting the historical distribution of Seasonally Dry Tropical Forests: new insights based on palaeodistribution modelling and palynological evidencegeb. Glob Ecol Biogeogr 20:272–288. CrossRefGoogle Scholar
  54. Zanella FCV (2010) Abelhas e plantas da Caatinga: importância dos visitantes florais na reprodução das plantas herbáceas e da Apis mellifera nas guildas de visitantes florais. In: Anais do IX Encontro sobre Abelhas. Ribeirão Preto, pp 40–43Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Departamento de Ecologia, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
  2. 2.Ciências BiológicasCampus Pantanal, Universidade Federal do Mato Grosso do SulCorumbáBrazil
  3. 3.Instituto de Ciências da NaturezaUniversidade Federal de AlfenasAlfenasBrazil

Personalised recommendations