Advertisement

Volatiles composition and timing of emissions in a moth-pollinated orchid in relation to hawkmoth (Lepidoptera: Sphingidae) activity

  • Ronny SteenEmail author
  • Hans Ragnar Norli
  • Gunda Thöming
Original Paper
  • 115 Downloads

Abstract

In the family Orchidaceae, many species have highly specialised floral structures and floral fragrances resulting from interactions with specific pollinators. Olfactory cues are important for the moths to locate orchids at a distance, whereas visual cues are important at a closer range. In this study, we combined a portable air entrainment kit with an automated video monitoring system for collecting volatiles and observing behaviour directly around-the-clock (24 h) in the natural habitat of our target plant–arthropod system, the orchid Platanthera chlorantha and the hawkmoth Sphinx pinastri. We found that P. chlorantha was visited almost exclusively by S. pinastri. All the visits occurred after sunset, principally between sunset and midnight. Soon after midnight, visits dropped to levels recorded at sunset, then declined further towards sunrise. The period with most visits matched the peak production of the terpenoids (Z)-β-ocimene and (E)-β-ocimene. In contrast, linalool, (E)-cinnamyl alcohol and benzyl benzoate emission continued to increase beyond the period of peak visits up to sunrise. Methyl benzoate emissions declined throughout the night from a sunset peak. As temporal emission of the two volatile ocimenes from P. chlorantha flowers matches S. pinastri foraging visits to the flowers, we propose that they play a vital role in assisting hawkmoths locate their hosts. This is the first study to show correspondence in the timing of specific scent emissions in orchids and moth activity on the scale of hours.

Keywords

Hawkmoth Pollination Orchidaceae Scent chemistry Sphingidae Volatiles 

Notes

Acknowledgements

We would like to thank Professor Kåre Lye and Lars Jørgen Rostad for showing us the locations in Hobøl and Rakkestad, respectively. Further, we are thankful to Professor Vidar Selås for assistance during species identification. Finally, we like to thank Peter Frost for editing and proofreading the manuscript.

Supplementary material

11829_2019_9682_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 KB)

Supplementary material 2 (MP4 49050 KB)

References

  1. Amasino RM, Cheung AY, Dresselhaus T, Kuhlemeier C (2017) Focus on flowering and reproduction. Plant Physiol 173:1–4CrossRefGoogle Scholar
  2. Babikova Z, Gilbert L, Bruce TJA, Birkett M, Caulfield JC, Woodcock C, Pickett JA, Johnson D (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16:835–843CrossRefGoogle Scholar
  3. Balao F, Herrera J, Talavera S, Dötterl S (2011) Spatial and temporal patterns of floral scent emission in Dianthus inoxianus and electroantennographic responses of its hawkmoth pollinator. Phytochem 72:601–609CrossRefGoogle Scholar
  4. Barrett SCH (2013) The evolution of plant reproductive systems: how often are transitions irreversible? Proc R Soc B 280:20130913.  https://doi.org/10.1098/rspb.2013.0913 CrossRefGoogle Scholar
  5. Braunschmid H, Mükisch B, Rupp T, Schäffler I, Zito R, Birtele D, Dötterl, S (2017) Interpopulation variation in pollinators and floral scent of the lady’s-slipper orchid Cypripedium calceolus L. Arthropod Plant Interact 11:363–379CrossRefGoogle Scholar
  6. Bruce TJA, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects—finding the right mix. Phytochem 72:1605–1611CrossRefGoogle Scholar
  7. Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274CrossRefGoogle Scholar
  8. Cai X, Bian L, Xu X, Luo Z, Li Z, Chen Z (2017) Field background odour should be taken into account when formulating a pest attractant based on plant volatiles. Sci Rep 7:41818.  https://doi.org/10.1038/srep41818 CrossRefGoogle Scholar
  9. Cheng X, Cordovez V, Etalo DG, van der Voort M, Raaijmakers JM (2016) Role of the GacS sensor kinase in the regulation of volatile production by plant growth promoting Pseudomonas fluorescens SBW25. Front Plant Sci 7:1706Google Scholar
  10. Dalen M, Knudsen GK, Norli HR, Thöming G (2015) Sources of volatiles mediating host location behaviour of Glypta haesitator, a larval parasitoid of Cydia nigricana. Biol Control 90:128–140CrossRefGoogle Scholar
  11. Darwin C (1876) The effects of cross and self fertilisation in the vegetable kingdom, 2nd edn. John Murray, LondonCrossRefGoogle Scholar
  12. Darwin C (1877) The various contrivances by which orchids are fertilised by insects, 2nd edn. John Murray, LondonCrossRefGoogle Scholar
  13. Delle-Vedove R, Schatz B, Dufay M (2017) Understanding intraspecific variation of floral scent in light of evolutionary ecology. Ann Bot-London 120:1–20CrossRefGoogle Scholar
  14. Dötterl S, Jürgens A (2005) Spatial fragrance patterns in flowers of Silene latiffolia: Lilac compounds as olfactory nectar guides? Plant Syst Evol 255:99–109CrossRefGoogle Scholar
  15. Dötterl S, David A, Boland W, Silberbauer-Gottsberger I, Gottsberger G (2012a) Evidence for behavioural attractiveness of methoxylated aromatics in a dynastid scarab beetle-pollinated Araceae. J Chem Ecol 38:1539–1543CrossRefGoogle Scholar
  16. Dötterl S, Jahreiss K, Jhumur US, Jürgens A (2012b) Temporal variation of flower in Silene otites (Caryophyllaceae): a species with a mixed pollination system. Bot J Linn Soc 169:447–460CrossRefGoogle Scholar
  17. Dudareva N, Pichersky E (2006) Biology of floral scents. CRB Press, Taylor and Francis Group, Boca RatonGoogle Scholar
  18. Fall R, Karl T, Hansel A, Jordan A, Lindinger W (1999) Volatile organic compounds emitted after leaf wounding: On-line analysis by proton-transfer-reaction mass spectrometry. J Geophys Res 104:15963–15974CrossRefGoogle Scholar
  19. Farina WM, Varjú D, Zhou Y (1994) The regulation of distance to dummy flowers during hovering flight in the hawk moth Macroglossum stellatarum. J Comp Physiol A 174:239–247CrossRefGoogle Scholar
  20. Fenske MP, Imaizumi T (2016) Circadian rhythms in floral scent emission. Front Plant Sci 7(462):1–6.  https://doi.org/10.3389/fpls.2016.00462 Google Scholar
  21. Harder LD, Thomson JD (1989) Evolutionary options for maximizing pollen dispersal of animal-pollinated plants. Am Nat 133:323–344CrossRefGoogle Scholar
  22. Haverkamp A, Bing J, Badeke E, Hansson BS, Knaden M (2016) Innate olfactory preference for flowers matching proboscis length ensure optimal energy gain in a hawkmoth. Nat Commun 7:11644.  https://doi.org/10.1038/ncomms11644 CrossRefGoogle Scholar
  23. Hoballah ME, Stuurman J, Turlings TCJ, Guerin PM, Connétable S, Kuhlemeier C (2005) The composition and timing of flower odour emission by wild Petunia axillaris coincide with the antennal perception and nocturnal activity of the pollinator Manduca sexta. Plant 222:141–150CrossRefGoogle Scholar
  24. Jansen R, Hofstee JW, Bouwmeester H, van Henten E (2010) Automated signal processing applied to volatile-based inspection of greenhouse crops. Sensors 10:7122–7233CrossRefGoogle Scholar
  25. Kelber A, Balkenius A, Warrant EJ (2003) Colour vision in diurnal and nocturnal hawkmoths. Integr Comp Biol 43:571–579CrossRefGoogle Scholar
  26. Kende A, Portwood D, Senior A, Earll M, Bolygo E, Seymor M (2010) Target list building for volatile metabolite profiling of fruit. J Chromatogr A 1217:6718–6723CrossRefGoogle Scholar
  27. Knudsen JT, Tollsten L (1993) trends in floral scent chemistry in pollonation syndromes: floral scent composition in moth-pollinated taxa. Bot J Linn Soc 113:263–284CrossRefGoogle Scholar
  28. Knudsen JT, Eriksson R, Gershenzon J (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120CrossRefGoogle Scholar
  29. Knudsen GK, Bengtsson M, Kobro S, Jaastad G, Hofsvang T, Witzgall P (2008) Discrepancy in laboratory and field attraction of apple fruit moth Argyresthia conjugella to host plant volatiles. Physiol Entomol 33:1–6CrossRefGoogle Scholar
  30. Koivisto AM, Vallius E, Salonen V (2002) Pollination and reproductive success of two colour variants of a deceptive orchid, Dactylorhiza maculata (Orchidaceae). Nord J Bot 22:53–58CrossRefGoogle Scholar
  31. Kováts E (1958) Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv Chim Acta 4:1915–1932CrossRefGoogle Scholar
  32. Kruskal JB, Wish M (1978) Multidimensional scaling. Sage University Paper Series on quantitative applications in the social sciences. Sage, Beverly Hills, pp 07–011Google Scholar
  33. Kumano Y, Yamaoka R (2006) Synchronization between temporal variation in heat generation, floral scents and pollinator arrival in beetle-pollinated tropical Araceae Homalomena propinqua. Plant Species Biol 21:173–183CrossRefGoogle Scholar
  34. LeBlanc HN (2008) Olfactory stimuli associated with the different stages of vertebrate decomposition and their role in the attraction of the blowfly Calliphora vomitoria (Diptera: Calliphoridae) to carcasses. PhD thesis, University of Derby, DerbyGoogle Scholar
  35. Lin IW, Sosso D, Chen LQ, Gase K, Kim SG, Kessler D, Klinkenberg PM, Gorder MK, Hou BH, Qu XQ, Carter CJ, Baldwin IT, Frommer WB (2014) Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 508:546–549CrossRefGoogle Scholar
  36. Lommen A (2009) MetAlign: Interface-Driven, versatile metabolomics tool for hyphenated Full-Scan mass spectrometry data preprosessing. Anal Chem 81:3079–3086CrossRefGoogle Scholar
  37. Lommen A, Kols HJ (2012) MetAlign 3.0: performance enhancement by efficient use of advances in computer hardware. Metabolomics 8:719–726CrossRefGoogle Scholar
  38. Lommen A, van der Weg G, van Engelen MC, Bor G, Hoogenboom LAP, Nielen MWF (2007) An untargeted metabolomics approach to contaminant analysis: Pinpointing potential unknown compounds. Anal Chim Acta 584:43–49CrossRefGoogle Scholar
  39. Lunau K (2004) Adaptive radiation and coevolution—pollination biology case studies. Org Drivers Evol 4:207–224CrossRefGoogle Scholar
  40. Majetic CJ, Wiggam SD, Ferguson CJ, Raguso RA (2015) Timing is everything: temporal variation in floral scent, and its connections to pollinator behavior and female reproductive success in Phlox divaricata. Am Midl Nat 173:191–207CrossRefGoogle Scholar
  41. Martins DJ, Johnson SD (2007) Hawkmoth pollination of aerangoid orchids in Kenya, with special reference to nectar sugar concentration gradients in the floral spurs. Am J Bot 94:650–659CrossRefGoogle Scholar
  42. Martos F, Cariou M-L, Pailler T, Fournel J, Bytebier B, Johnson SD (2015) Chemical and morphological filters in a specialized floral mimicry system. New Phytol 207:225–234CrossRefGoogle Scholar
  43. Micheneau C, Johnson SD, Fay MF (2009) Orchid pollination: from Darwin to the present day. Bot J Linn Soc 161:1–19CrossRefGoogle Scholar
  44. Micheneau C, Fournel J, Warren BH, Hugel S, Gauvin-Bialecki A, Pailler T, Strasberg D, Chase MW (2010) Orthoptera, a new order of pollinator. Ann Bot 105:355–364CrossRefGoogle Scholar
  45. Mitchell VJ, Manning LA, Cole L, Suckling DM, El-Sayed AM (2008) Efficacy of the pear ester as a monitoring tool for codling moth Cydia pomonella (Lepidoptera: Tortricidae) in New Zealand apple orchard. Pest Manage Sci 64:209–214CrossRefGoogle Scholar
  46. Müller H (1871) Application of the Darwinian theory to flowers and the insects which visit them. Am Nat 5:271–297CrossRefGoogle Scholar
  47. Nilsson LA (1978) Pollination ecology and adaption in Platanthera chlorantha (Orchidaceae). Bot Not 131:35–51Google Scholar
  48. Nilsson LA (1983) Processes of isolation and introgressive interplay between Platanthera bifolia (L.) Rich and P. chlorantha (Custer) Reichb. (Orchidaceae). Bot J Linn Soc 87:325–350CrossRefGoogle Scholar
  49. Nilsson LA (1985) Characteristics and distribution of intermediates between Platanthera bifola and Platanthera chlorantha (Orchidaceae) in the nordic countries. Nord J Bot 5:407–419CrossRefGoogle Scholar
  50. Plepys D, Ibarra F, Löfstedt C (2002a) Volatiles from flowers of Plantanthera bifolia (Orchidaceae) attractive to the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae). Oikos 99:69–74CrossRefGoogle Scholar
  51. Plepys D, Ibarra F, Francke W, Löfstedt C (2002b) Odour-mediated nectar foraging in a silver Y moth, Autographa gamma (Lepitoptera: Noctuidae): behavioural and electrophysiological responses to floral volatiles. Oikos 99:75–82CrossRefGoogle Scholar
  52. Raguso RA, Light DM (1998) Electroantennogram responses of male Sphinx perlegans hawkmoths to floral and ‘green-leaf volatiles’. Entomol Exp Appl 86:287–293CrossRefGoogle Scholar
  53. Raguso RA, Pichersky E (1999) A day in the life of a linalool molecule: chemical communication in a plant-pollinator system. Part 1: Linalool biosynthesis in flowering plants. Plant Species Biol 14:95–120CrossRefGoogle Scholar
  54. Raguso RA, Willis MA (2002) Synergy between visual and olfactory cues in nectar feeding by naı̈ve hawkmoths, Manduca sexta. Anim Behav 64:685–695CrossRefGoogle Scholar
  55. Raguso RA, Light DM, Pickersky E (1996) Electroantennogram responses of Hyles lineata (Sphingidae: Lepidoptera) to volatile compounds from Clarkia breweri (Onagraceae) and other moth-pollinated flowers. J Chem Ecol 22:1735–1766CrossRefGoogle Scholar
  56. Raguso RA, LeClere AR, Schlumpberger BO (2005) Sensory flexibility in hawkmoth foraging behavior: lessons from Manduca sexta and other species. Chem Senses 30(Suppl 1):i295–i296CrossRefGoogle Scholar
  57. Ramirez SR, Eltz T, Fujiwara MK, Gerlach G, Goldman-Huertas B, Tsutsui ND, Pierce NE (2011) Asynchronous diversification in a specialized plant-pollinator mutualism. Science 333:1742–1746CrossRefGoogle Scholar
  58. Randlkofer B, Obermaier E, Hilker M, Meiners T (2010) Vegetation complexity—the influence of plant species diversity and plant structures on plant chemical complexity and arthropods. Basic Appl Ecol 11:383–395CrossRefGoogle Scholar
  59. Riffell JA, Shlizerman E, Sanders E, Abrell L, Medina B, Hinterwirth AJ, Kutz JN (2014) Flower discrimination by pollinators in a dynamic chemical environment. Science 344:1515–1518CrossRefGoogle Scholar
  60. Rodríguez-Gironés MA, Llandres AL (2008) Resource competition triggers the co-evolution of long tongues and deep corolla tubes. PLoS ONE 3:e2992CrossRefGoogle Scholar
  61. Schemske DW, Hortvitz CC (1984) Variation among floral visitors in pollination ability: a precondition for mutualism specialization. Science 225:519–521CrossRefGoogle Scholar
  62. Schiestl FP (2015) Ecology and evolution of floral volatile-mediated information transfer in plants. New Phytol 206:571–577CrossRefGoogle Scholar
  63. Schlumpberger BO, Raguso RA (2008) Geographic variation in floral scent of Echinopsis ancistrophora (Cactaceae); evidence for constraints on hawkmoths attraction. Oikos 117:801–814CrossRefGoogle Scholar
  64. Schroeder R, Hilker M (2008) The relevance of background odor in resource location by insect: a behavioural approach. Bioscience 58:308–316CrossRefGoogle Scholar
  65. Simpson BB, Neff JL (1981) Floral rewards: alternatives to pollen and nectar. Ann Mo Bot Gard 68:301–322CrossRefGoogle Scholar
  66. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. WH Freeman, New YorkGoogle Scholar
  67. Steen R (2012) Pollination of Platanthera chlorantha (Orchidaceae): new video registration of a hawkmoth (Sphingidae). Nord J Bot 30:623–626CrossRefGoogle Scholar
  68. Steen R (2017) Diel activity, frequency and visit duration of pollinators in focal plants: in situ automatic camera monitoring and data processing. Methods Ecol Evol 8:203–213CrossRefGoogle Scholar
  69. Steen R, Aase ALTO (2011) Portable digital video surveillance system for monitoring flower-visiting bumblebees. J Pollinat Ecol 5:90–94Google Scholar
  70. Steen R, Mundal D (2013) New video registration of Autographa pulchrina (Haworth, 1809) (Lepidoptera, Noctuidae) and Sphinx pinastri L., 1758 (Lepidoptera, Sphingidae) pollinating Platanthera bifolia latiflora (Orchidaceae) in Norway. Norw J Entomol 60:57–61Google Scholar
  71. Stein SE (1999) An integrated method for spectrum extraction and compound identification from GC/MS data. J Am Soc Mass Spectrom 10:770–781CrossRefGoogle Scholar
  72. Thomas HS (2015) The role of chemicals in location of host plants by midge pests of UK fruit crops. PhD thesis, University of Greenwich, UKGoogle Scholar
  73. Thöming G, Norli HR, Saucke H, Knudsen GK (2014) Pea plant volatiles guide host location behaviour in pea moth. Arthropod Plant Interact 8:109–122CrossRefGoogle Scholar
  74. Thompson JN, Cunningham BM (2002) Geographic structure and dynamics of coevolutionary selection. Nature 417:735–738CrossRefGoogle Scholar
  75. Tikunov Y, Lommen A, de Vos CHR, Verhoeven HA, Bino RJ, Hall RD, Bovy AG (2005) A novel approach for nontargeted data analysis of metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol 139:1125–1137CrossRefGoogle Scholar
  76. Tollsten L (1993) A multivariate approach to post-pollination changes in the floral scent of Plantanthera bifolia (Orchidaceae). Nord J Bot 13:495–499CrossRefGoogle Scholar
  77. Tollsten L, Bergström G (1993) Fragrance chemotypes of Plantanthera (Orchidaceae)—the results of adaptation to pollinating moths? Nordic J Bot 13:607–613CrossRefGoogle Scholar
  78. van der Niet T, Jürgens A, Johnson SD (2015) Is the timing of scent emission correlated with insect visitor activity and pollination in long-spurred. Satyrium species? Plant Biol 17:226–237Google Scholar
  79. Wasserthal LT (1997) The pollinators of the Malagasy star orchids Angraecum sesquipedale, A. sororium and A. compactum and the evolution of extremely long spurs by pollinator shift. Bot Acta 110:343–359CrossRefGoogle Scholar
  80. Whittall JB, Hodges SA (2007) Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447:706–709CrossRefGoogle Scholar
  81. Wiebes JT (1979) Co-evolution of figs and their insect pollinators. Annu Rev Ecol Evol Syst 10:1–12CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
  2. 2.Norwegian Institute of Bioeconomy ResearchÅsNorway

Personalised recommendations