Advertisement

Arthropod-Plant Interactions

, Volume 13, Issue 2, pp 335–348 | Cite as

Anchoring of greenhouse whitefly eggs on different rose cultivars

  • Dagmar VoigtEmail author
  • Klaus Schrameyer
  • Johannes Kiefer
  • Claus P. W. Zebitz
  • Stanislav Gorb
Original Paper

Abstract

Whiteflies attach their eggs to plants by implanting the egg pedicel into the epidermis of the underside of leaves. This pedicel works like a wall plug embedded in sealing cement, presenting a smart interconnection, which was exemplarily studied in Trialeurodes vaporariorum eggs on two stages of abaxial leaflets of four cut rose cultivars using a combination of microscopic and biomechanical techniques. The penetration force obtained by piercing single epidermal cells with an insect minuten pin did not significantly correlate with the force which was applied to pull off the greenhouse whitefly eggs from abaxial leaves. A maximum pull-off force of 5.4 mN was measured on young leaves of the rose cultivar ‘Schloss Ippenburg®’, corresponding to maximum 941 times the egg weight. Egg pull-off force significantly differed between cut rose cultivars and leaf ages. On greenhouse whitefly-susceptible cultivars ‘Poesie®’ and ‘Reggae®’, eggs detached, applying less force compared to that on resistant cultivars. Leaf structural features had no significant impact on greenhouse whitefly egg pull-off forces. A major effect of leaf turgor pressure and swelling of colleterial gland secretion (cement) surrounding the whitefly egg is assumed to facilitate the firm interconnection between egg and plant epidermis by a combination of form closure, friction locking, and adhesive bond forming a composite material in the contact region. This bond exhibits a maximum adhesive strength of 12.2 MPa, which is much higher than those in beetle and moth eggs glued to oviposition substrates.

Keywords

Attachment Insect egg Oviposition Pedicel Rosa Trialeurodes vaporariorum 

Notes

Acknowledgements

Harald Schneller (Landwirtschaftliches Technologiezentrum Augustenberg LTZ, Karlsruhe, Germany; Department 3: Pflanzengesundheit, Futtermittel- und Saatgutuntersuchung, Referat 32: Pflanzenschutz—Ackerbau, Gartenbau, Biologischer Pflanzenschutz) encouraged the study and delivered preliminary observational results of greenhouse whiteflies in commercial cut rose production. Michael Reichert (Gärtnerei Reichert, Pettstadt, Germany) and Stefan Raab (Raab Rosen, Rockenberg/Oppershofen, Germany) kindly provided plant material and background knowledge of rose cultivars and breeding. Juliane Braun (consultative garden engineer, Hamburg, Germany), Fabian Gülk (Kordes Rosen, W. Kordes’ Söhne Rosenschulen GmbH & Co KG, Klein Offenseth-Sparrieshoop, Germany), and Alexander Letkow (Rosen Tantau Vertrieb GmbH & Co. KG, Uetersen, Germany) are acknowledged for valuable information about growing and breeding of cut roses. The first author thanks Michael Voigt (Zwickau/Sa., Germany) for constructive brainstorming.

Supplementary material

11829_2019_9680_MOESM1_ESM.pdf (30.3 mb)
Supplementary material 1 (PDF 30983 KB)

References

  1. Al Bitar L, Gorb SN, Zebitz CPW, Voigt D (2012) Egg adhesion of the codling moth Cydia pomonella to various substrates: I. Leaf surfaces of different apple cultivars. Arthropod-Plant Interact 6:471–488. ( https://doi.org/10.1007/s11829-012-9198-z) CrossRefGoogle Scholar
  2. Al Bitar L, Gorb SN, Zebitz CPW, Voigt D (2014) Egg adhesion of the codling moth Cydia pomonella to various substrates: II. Fruit surfaces of different apple cultivars. Arthropod-Plant Interact 8:57–77. ( https://doi.org/10.1007/s11829-013-9288-6)CrossRefGoogle Scholar
  3. Avery BA, Kumar V, Simmonds MSJ, Faull J (2015) Influence of leaf trichome type and density on the host plant selection by the greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Appl Entomol Zool 50:79–87CrossRefGoogle Scholar
  4. Bährmann R (2002) Die Mottenschildläuse Aleyrodina. In: Moritz G (ed) Pflanzensaftsaugende Insekten—Band 2, Die neue Brehm-Bücherei Bd, 664. Westarp Wissenschaften, HohenwarslebenGoogle Scholar
  5. Bas N, Mollema C, Lindhout P (1992) Resistance in Lycopersicon hirsutum f. glabratum to the greenhouse whitefly (Trialeurodes vaporariorum) increases with plant age. Euphytica 64:189–195CrossRefGoogle Scholar
  6. Beament JWL, Lal R (1957) Penetration through the egg-shell of Pieris brassicae (L.). Bull Entomol Res 48:109–125. ( https://doi.org/10.1017/S0007485300054134)CrossRefGoogle Scholar
  7. Betz O (2010) Adhesive exocrine glands in insects: morphology, ultrastructure, and adhesive secretion. In: von Byern J, Grunwald I (eds) Biological adhesive systems: from nature to technical and medical application. Springer, Vienna, pp 111–152CrossRefGoogle Scholar
  8. Bradford KJ, Hsiao TC (1982) Physiological responses to moderate water stress. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Encyclopedia of plant physiology, New series, vol 12B. Springer, Berlin, pp 263–324CrossRefGoogle Scholar
  9. Buckner JS, Freeman TP, Ruud RL, Chu C-C, Henneberry TJ (2002) Characterization and functions of the whitefly egg pedicel. Arch Insect Biochem Physiol 49:22–33CrossRefGoogle Scholar
  10. Byrne DN, Cohen AC, Draeger EA (1990) Water uptake from plant tissue by the egg pedicel of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). Can J Zool 68:1193–1195CrossRefGoogle Scholar
  11. CABI (2018) Trialeurodes vaporariorum (whitefly, greenhouse). Invasive Species Compendium. https://www.cabi.org/isc/datasheet/54660
  12. Carter D (1990) Insect egg glue. An investigation of the nature and secretion of insect egg glues, with special reference to the human louse, Pediculus humanus and the cabbage white butterfly, Pieris brassicae. Ph.D. thesis, Cambridge University, CambridgeGoogle Scholar
  13. Castañé C (1989) Estudio de una relación insecto-planta: Trialeurodes vaporariorum y Pelargonium x domesticum. Ph.D. thesis, University of Barcelona, SpainGoogle Scholar
  14. Castañé C, Albajes R (1994) Mortality of immature stages of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) on regal Geranium Pelargonium x domesticum. Environ Entomol 23:1443–1449CrossRefGoogle Scholar
  15. Castañé C, Savé R (1993) Leaf osmotic potential decrease: a possible cause of mortality of greenhouse whitefly eggs. Entomol Exp Appl 69:1–4CrossRefGoogle Scholar
  16. Cerkvenik U, van de Straat B, Gussekloo SWS, van Leeuwen JL (2017) Mechanisms of ovipositor insertion and steering of a parasitic wasp. Proc Natl Acad Sci USA 114:E7822–E7831CrossRefGoogle Scholar
  17. Cerkvenik U, Dodou D, van Leeuwen JL, Gussekloo SWS (2018) Functional principles of steerable multi-element probes in insects. Biol Rev.  https://doi.org/10.1111/brv.12467 Google Scholar
  18. Coombe PE (1982) Visual behaviour of the greenhouse whitefly, Trialeurodes vaporariorum. Physiol Entomol 7:243–251CrossRefGoogle Scholar
  19. Darshanee HLC, Ren H, Ahmed N, Zhang Z-F, Liu Y-H, Liu T-X (2017) Volatile-mediated attraction of greenhouse whitefly Trialeurodes vaporariorum to tomato and eggplant. Front Plant Sci 8:1825CrossRefGoogle Scholar
  20. de Ponti OMB, Pet G, Hogenboom NG (1975) Resistance to the glasshouse whitefly (Trialeurodes vaporariorum Westw.) in tomato (Lycopersicon esculentum Mill.) and related species. Euphytica 24:645–649CrossRefGoogle Scholar
  21. de la Riva EG, Olmo M, Poorter H, Ubera JL, Villar R (2016) Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 mediterranean woody species along a water availability gradient. PLoS ONE 11(2):e0148788.  https://doi.org/10.1371/journal.pone.0148788 CrossRefGoogle Scholar
  22. Dereser E (2006) Wer trägt wie und was. Würth Ratgeber Befestigungstechnik 2006:15–17Google Scholar
  23. Deshpande VG (1936) Miscellaneous observations on the biology of Aleurodidae (Aleurodes brassicae). J Bombay Nat Hist Soc 39:190–193Google Scholar
  24. Dombrowski J (2006) Gut gedübelt. Würth Ratgeber Befestigungstechnik 2006:18–19Google Scholar
  25. Dowell RV (1979) Host selection by the Citrus blackfly Aleurocanthus woglumi (Homoptera: Aleyrodidae). Entomol Exp Appl 25:289–296CrossRefGoogle Scholar
  26. Duffey SS (1986) Plant glandular trichomes: their partial role in defense against insects. In: Juniper BE, Southwood TRE (eds) Insects and plant surface. Edward Arnold, London, pp 173–183Google Scholar
  27. Eigenbrode SD (1996) Plant surface waxes and insect behaviour. In: Kerstiens G (ed) Plant cuticles—an integral functional approach. BIOS Publ., Oxford, pp 201–222Google Scholar
  28. Eigenbrode SD (2004) The effects of plant epicuticular waxy blooms on attachment and effectiveness of predatory insects. Arthr Struct Dev 33:91–102CrossRefGoogle Scholar
  29. Eligehausen R, Fuchs W (2012) Befestigungstechnik. In: Zilch K, Diedrichs CJ, Katzenbach R, Beckmann KJ (eds) Handbuch für Bauingenieure. Technik, Organisation und Wirtschaftlichkeit. 2. aktuelle Auflage. Springer, Heidelberg, pp 1440–1471Google Scholar
  30. Emeljanov AF (2014) The evolutionary role and fate of the primary ovipositor in insects. Entomol Rev 93:91–130Google Scholar
  31. Fatouros NE, Bukovinszkine´Kiss G, Kalkers LA, Soler Gamborena R, Dicke M, Hilker M (2005) Oviposition-induced plant cues: do they arrest Trichogramma wasps during host location? Entomol Exp Appl 115:207–215CrossRefGoogle Scholar
  32. Frey-Wyssling A (1959) Die pflanzliche Zellwand. Springer Verlag, BerlinCrossRefGoogle Scholar
  33. Gamarra H, Carhuapoma P, Mujica N, Kreuze J, Kroschel J (2016) Greenhouse whitefly, Trialeurodes vaporariorum (Westwood 1956). In: Kroschel J, Mujica N, Carhuapoma P, Sporleder M (eds) Pest distribution and risk atlas for Africa. Potential global and regional distribution and abundance of agricultural and horticultural pests and associated biocontrol agents under current and future climates. International Potato Center (CIP), Lima, pp 154–168.  https://doi.org/10.4160/9789290604761-12 Google Scholar
  34. Gill RJ (1990) The morphology of whiteflies. In: Gerling D (ed) Whiteflies: their bionomics, pest status and management. Intercept Ltd Andover, Hants, pp 13–46Google Scholar
  35. Gorman K, Cahill M, Denholm I (1998) Response of European populations of the glasshouse whitefly, Trialeurodes vaporariorum, to conventional and novel insecticides. In: NN (ed) Brighton crop protection conference: pests & diseases.Volume 2: Proceedings of an international conference, Brighton, 16–19 November 1998, pp 491–496Google Scholar
  36. Götte E, Sell P (2002) Biologische Schädlingsbekämpfung bei Schnittrosen unter Glas mit der “offenen Zucht von Aphidoletes aphidimyza (Rond.) and Getreideblattläusen” als Kernelement. Gesunde Pfl 54:81–85Google Scholar
  37. Grimaldi D, Engel MS (2005) The sucking insects: Hemiptera. In: Grimaldi D, Engel, MS (eds) Evolution of the insects. Cambridge University Press, New York, pp 287–330Google Scholar
  38. Guershon M, Gerling D (2001) Effect of foliar tomentosity on phenotypic plasticity in Bemisia tabaci (Hom., Aleyrodidae). J Appl Ent 125:449–453CrossRefGoogle Scholar
  39. Hasanuzzaman ATM, Islam MN, Zhang Y, Zhang C-Y, Liu T-X (2016) Leaf morphological characters an be a factor of intra-varietal preference of whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) among eggplant varieties. PLoS ONE 11:e0153880CrossRefGoogle Scholar
  40. Hassel MP, Southwood TRE (1978) Foraging strategies of insects. Ann Rev Ecol Syst 9:75–98CrossRefGoogle Scholar
  41. Hilker M (1994) Egg deposition and protection of eggs in Chrysomelidae. In: Jolivet PH, Cox ML, Petitpierre E (eds) Novel aspects of the biology of Chrysomelidae. Kluwer Academic Publishers, Netherlands, pp 263–276CrossRefGoogle Scholar
  42. Hilker M, Meiners T (2006) Early herbivore alert, insect eggs induce plant defense. J Chem Ecol 32:1379–1396.  https://doi.org/10.1007/s10886-006-9057-4 CrossRefGoogle Scholar
  43. Hilker M, Rohfritsch O, Meiners T (2002) The plant´s response towards insect oviposition. In: Hilker M, Meiners T (eds) Chemoecology of insect eggs and egg deposition. Blackwell, Berlin, pp 205–234Google Scholar
  44. Hilker M, Stein C, Schroeder R, Varama M, Mumm R (2005) Insect egg deposition induces defence responses in Pinus sylvestris: characterisation of the elicitor. J Exp Biol 208:1849–1854.  https://doi.org/10.1242/jeb.01578 CrossRefGoogle Scholar
  45. Hinton HE (1961) The structure and function of the egg-shell in the Nepidae (Hemiptera). J Ins Physiol 7:224–257CrossRefGoogle Scholar
  46. Hinton HE (1981) Biology of insect eggs, vol. I–III. Pergamon Press, OxfordGoogle Scholar
  47. Iida H, Kitamura T, Honda K-I (2009) Comparison of egg-hatching rate, survival rate and developmental time of the immature stage between B- and Q-biotypes of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) on various agricultural crops). Appl Entomol Zool 44:267–273CrossRefGoogle Scholar
  48. Jaenike J (1978) On optimal behavior in phytophagous insects. Theor Pop Biol 14:350–356CrossRefGoogle Scholar
  49. Janz N (2002) Evolutionary ecology of oviposition strategies. In: Hilker M, Meiners T (eds) Chemoecology of insect eggs and egg deposition. Blackwell, Berlin, pp 349–376Google Scholar
  50. Kenny JS (1958) Physiological condition of the host-plant and susceptibility to aphid attack. Entomol Exp Appl 1:50–65CrossRefGoogle Scholar
  51. Kiefer JS (2005) Wirtspräferenz von Trialeurodes vaporariorum (Westwood) (Homoptera, Aleyrodidae) für verschiedene Rosensorten. BSc Thesis, Fakultät Agrarwissenschaften Institut für Phytomedizin, Stuttgart, Universität Hohenheim, GermanyGoogle Scholar
  52. Kiefer J (2008) Die Verankerung des Eis von Trialeurodes vaporariorum (Westwood) (Homoptera, Aleyrodidae) im Wirtsgewebe. MSc Thesis, Fakultät Agrarwissenschaften Institut für Phytomedizin, Stuttgart, Universität Hohenheim, GermanyGoogle Scholar
  53. Knoll F (1914) Über die Ursache des Ausgleitens der Insektenbeine an wachsbedeckten Pflanzenteilen: ein Beitrag zur experimentellen Ökologie der Gattungen Iris, Cotyledon und Nepenthes. Jb Wiss Bot 54:448–497Google Scholar
  54. Lambert AL, McPherson RM, Sparks B (1995) Evaluation of fourteen soybean genotypes for resistance to two whitefly species (Homoptera: Aleyrodidae) in the greenhouse. J Entomol Sci 30:519–526CrossRefGoogle Scholar
  55. Lang A (2006) Auf den Grund gegangen. Würth Ratgeber Befestigungstechnik 2006:9–14Google Scholar
  56. Lauritsen K, Paulson GS (1998) A microscopic examination of whitefly (Homoptera: Aleyrodidae) egg pedicel insertion into host plant tissues. J Pennsylvania Acad Sci 71:99–103Google Scholar
  57. Lei H, van Lenteren JC, Xu RM (2001) Effects of plant tissue on the acceptance of four greenhouse vegetable host plants by the greenhouse whitefly: an electrical graph (EPG) study. Eur J Entomol 98:31–36CrossRefGoogle Scholar
  58. Li D, Huson MG, Graham LD (2008) Proteinaceous adhesive secretions from insects, and in particular the egg attachment glue of Opodiphthera sp. moths. Arch Insect Biochem Physiol 69:85–105.  https://doi.org/10.1002/arch.20267 CrossRefGoogle Scholar
  59. Lindquist RK, Bauerle WL, Spadafora R (1972) Effect of the greenhouse whitefly on yields of greenhouse tomatoes. J Econ Entomol 65:1406–1408CrossRefGoogle Scholar
  60. Lloyd L (1922) The control of the greenhouse whitefly (Asterochiton vaporariorum) with notes on its biology. Ann Appl Biol 9:1–32CrossRefGoogle Scholar
  61. Maliepaard C, Bas N, van Heusden S, Kos J, Pet G, Verkerk R, Vrielink R, Zabel P, Lindhout P (1995) Mapping of QTLs for glandular trichome densities and Trialeurodes vaporariorum (greenhouse whitefly) resistance in an F2 from Lycopersicon esculentum x L. hirsutum f. glabratum. Heredity 75:425–433CrossRefGoogle Scholar
  62. McDaniel T, Tosh CR, Gatehouse AMR, George D, Robson M, Brogan B (2016) Novel resistance mechanisms of a wild tomato against the glasshouse whitefly. Agron Sustain Dev 36:14CrossRefGoogle Scholar
  63. Meier U, Bleiholder H, Brumme H, Bruns E, Mehring B, Proll T, Wiegand J (2009) Phenological growth stages of roses (Rosa sp.): codification and description according to the BBCH scale. Ann Appl Biol 154:231–238CrossRefGoogle Scholar
  64. Meiners T, Hilker M (1997) Host location in Oomyzus gallerucae (Hymenoptera: Eulophidae), an egg parasitoid of the elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae). Oecologia 112:87–93CrossRefGoogle Scholar
  65. Morgan JM (1984) Osmoregulation and water stress in higher plants. Ann Rev Physiol 35:299–319CrossRefGoogle Scholar
  66. Nakazawa K, Hayashi H, Hosoda A, Naba K (1976) Studies on the biology and control of the greenhouse whitefly Trialeurodes vaporariorum Westwood 1. A tentative catalogue of host plants of Trialeurodes vaporariorum in Japan. Bull Hiroshima Prefectural Agric Exp St 37:57–61Google Scholar
  67. Noldus LPJJ, Rumei X, van Lenteren JC (1985) The parasite-host relationship between Encarsia formosa Gahan (Hymenoptera: Aphelinidae) and Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). XVII. Within-plant movement of adult greenhouse whiteflies. Z Ang Ent 100:494–503CrossRefGoogle Scholar
  68. Oana P, Pop D, Cuc G, Oros S, Oltean I, Bunescu H, Bodiș I (2007) Studies regarding the whitefly external morphology of the egg and larvae (Trialeurodes vaporariorum Westw.). Bull USAMV-CN 63:249–253Google Scholar
  69. Omer AD, Johnson MW, Tabashnik BE, Ullman DE (1993) Association between insecticide use and greenhouse whitefly (Trialeurodes vaporariorum Westwood) resistance to, insecticides in Hawaii. Pestic Sci 37:253–259CrossRefGoogle Scholar
  70. Ortega Arenas LD, Lagunes Tejeda A, Rodriguez Maciel JC, Rodriguez Hernandez C, Alatorre Rosas R, Barcenas Ortega NM (1998) Susceptibility to insecticides in adults of whitefly Trialeurodes vaporariorum (West.) (Homoptera. Aleyrodidae) from Tepoztlan, Morelos Mexico. Agrociencia 32:249–254Google Scholar
  71. Paulson GS, Beardsley JW (1985) Whitefly (Hemiptera: Aleyrodidae) egg pedicel insertion into host plant stomata. Ann Entomol Soc Am 78:506–508CrossRefGoogle Scholar
  72. Pijnakker J, Ramakers P (2009) Development of integrated pest management in greenhouse cut roses (in the Netherlands). Floricult Ornam Biotechnol 2009:117–120Google Scholar
  73. Pijnakker J, García Victoria N, Ramakers PMJ (2007) Predatory mites for biocontrol of the greenhouse whitefly, Trialeurodes vaporariorum in cut roses. Acta Hortic 751:259–264CrossRefGoogle Scholar
  74. Poinar GO Jr (1965) Observations on the biology and ovipositional habits of Aleurocybotus occiduus (Homoptera: Aleyrodidae) attacking grasses and sedges. Ann Ent Soc Am 58:618–620CrossRefGoogle Scholar
  75. Quaintance AL, Baker AC (1915) Classification of the Aleyrodidae. Government Printing Office, Washington, 114 ppGoogle Scholar
  76. R Core Team (2018) A language and environment for statistical computing. Version 3.5.0. R Foundation for Statistical Computing, ViennaGoogle Scholar
  77. Raspel S, Götte E, Richter E, Klose F, Sell P (2006) Langzeitkosten des biologisch-integrierten Pflanzenschutzes mit Nützlingen in Schnittrosen. Nachrichtenbl Deut Pflanzenschutzd 58:174–180Google Scholar
  78. Roditakis NE (1990) Host plants of greenhouse whitefly Trialeurodes vaporariorum Westwood (Homoptera: Aleyrodidae) in Crete. Attractiveness and impact on whitefly life stages. Agric Ecosyst Environ 31:217–224CrossRefGoogle Scholar
  79. Roermund HJW, van Lenteren JC (1992) The parasite-host relationship between Encarsia formosa (Hymenoptera: Aphelinidae) and Trialeurodes vaporariorum (Homoptera: Aleyrodidae) XXXIV. Life-history parameters of the greenhouse whitefly, Trialeurodes vaporariorum as a function of host plant and temperature. Wageningen Agricultural University Papers, pp 1–35Google Scholar
  80. Scherge M, Gorb SN (2001) Biological micro- and nanotribology. Nature’s solutions. Springer, BerlinCrossRefGoogle Scholar
  81. Slifer EH (1938) The formation and structure of a special water-absorbing area in the membranes covering the grasshopper egg. J Cell Sci s2–80:437–457Google Scholar
  82. Soria C, Sesé AIL, Gómez-Guillamón ML (1996) Resistance mechanisms of Cucumis melo var. agrestis against Trialeurodes vaporariorum and their use to control a closterovirus that causes a yellowing disease of melon. Plant Pathol 45:761–766CrossRefGoogle Scholar
  83. Southwood R (1986) Plant surfaces and insects-an overview. In: Juniper B, Southwood R (eds) Insects and the plant surface. Edward Arnold Publishers, London, pp 1–22Google Scholar
  84. Stork NE (1980) Role of waxblooms in preventing attachment to Brassicas by the mustard beetle Phaedon cochleariae. Entomol Exp Appl 28:100–107CrossRefGoogle Scholar
  85. Stork NE (1986) The form of plant waxes: a means of preventing insect attachment? In: Juniper B, Southwood R (eds) Insects and the plant surface. Edward Arnold Publishers, London, pp 346–347Google Scholar
  86. Strümpel H (1983) Homoptera (Pflanzensauger). In: Beier M, Fischer M, Helmcke J-G, Starck D, Wermuth H (eds) Handbook of zoology. A natural history of the phyla of the animal kingdom, vol IV, Arthropoda: Insecta, Part 28. Walter de Gruyter, BerlinGoogle Scholar
  87. Torre S, Fjeld T, Gislerød HR, Moe R (2003) Leaf anatomy and stomatal morphology of greenhouse roses grown at moderate of high air humidity. J Am Soc Hortic Sci 128:598–602CrossRefGoogle Scholar
  88. Toscano N, Zalom F, Bi J (2007) Greenhouse whitefly management. Calif Strawb Comm 2:1–4Google Scholar
  89. Tosh CR, Brogan B (2015) Control of tomato whiteflies using the confusion effect of plant odours. Agron Sustain Dev 35:183–183CrossRefGoogle Scholar
  90. Turnipseed SG (1977) Influence of trichome variations on populations of small phytophagous insects in soybean. Environ Entomol 6:815–817CrossRefGoogle Scholar
  91. van Lenteren JC, Noldus LPJJ (1990) Whitefly-plant relationships: behavioural and ecological aspects. In: Gerling D (ed) Whiteflies: their bionomics, pest status and management. Intercept Ltd Andover, Hants, pp 47–88Google Scholar
  92. van Boxtel W, Woets J, van Lenteren JC (1978) Determination of host-plant quality of eggplant (Solanum melongena L.), cucumber (Cucumis sativus L.), tomato (Lycopersicum esculentum L.) and paprika (Capsicum annuum L.) for the greenhouse whitefly (Trialeurodes vaporariorum) (Westwood) (Homoptera: Aleyrodidae). Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 43:397–408Google Scholar
  93. van Sas J, Woets J, van Lenteren JC (1978) Determination of host-plant quality of gherkin (Cucumis sativus L.), melon (Cucumis melo L.) and gerbera (Gerbera jamesonii Hook) for the greenhouse whitefly Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 43:409–420Google Scholar
  94. van der Kamp RJ, van Lenteren JC (1981) The parasite-host relationship between Encarsia formosa Gahan (Hymenoptera: Aphelinidae) and Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). J Appl Entomol 92:149–159Google Scholar
  95. Voigt D, Gorb S (2010) Egg attachment of the asparagus beetle Crioceris asparagi to the crystalline waxy surface of Asparagus officinalis. Proc R Soc B 277:895–903. ( https://doi.org/10.1098/rspb.2009.1706)CrossRefGoogle Scholar
  96. Walker GP (1987) Probing and oviposition behavior of the bayberry whitefly (Homoptera: Aleyrodidae) on young and mature lemon leaves. Ann Entomol Soc Am 80:524–529CrossRefGoogle Scholar
  97. Walker GP (1988) The role of leaf cuticle and leaf age preference by bayberry whitefly (Homoptera: Aleyrodidae) on lemon. Ann Entomol Soc Am 81:365–369CrossRefGoogle Scholar
  98. Walker GP, Perring TM (1994) Feeding and oviposition behavior of whiteflies (Homoptera: Aleyrodidae) interpreted from AC electronic feeding monitor waveforms. Ann Entomol Soc Am 87:363–374CrossRefGoogle Scholar
  99. Wardlow LR, Ludlam FAB, French N (1972) Insecticide resistance in glasshouse whitefly. Nature 239:164–165CrossRefGoogle Scholar
  100. Weber H (1930) Biologie der Hemipteren. Eine Naturgeschichte der Schnabelkerfe. In: Schoenichen W (ed) Biologische Studienbücher XI, Verlag von Julius Springer, BerlinCrossRefGoogle Scholar
  101. Weber H (1931) Lebensweise und Umweltbeziehungen von Trialeurodes vaporariorum (Westwood) (Homoptera-Aleurodina). Erster Beitrag zu einer Monographie dieser Art. Zoomorphology 23:575–753Google Scholar
  102. Wigglesworth VB (1965) The principles of insect physiology, 6th edn. Methuen, LondonGoogle Scholar
  103. Willmer P (1986) Microclimatic effects on insects at the plant surface. In: Juniper B, Southwood R (eds) Insects and the plant surface. Edward Arnold Publishers, London, pp 65–80Google Scholar
  104. Wyss U (2006) Lebensweise und Entwicklung der weißen Fliegen Trialeurodes vaporariorum und Bemisia tabaci. Institute for Phytopathology, Videodokumentation Kiel. http://entofilm.com
  105. Zhang G-F, Wan F-H (2012) Suitability changes with host leaf age for Bemisia tabaci B biotype and Trialeurodes vaporariorum. Environ Entomol 41:1125–1130CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute for Botany, Faculty of BiologyTechnische Universität DresdenDresdenGermany
  2. 2.ÖhringenGermany
  3. 3.Institute of PhytomedicineUniversity of HohenheimStuttgartGermany
  4. 4.Functional Morphology and Biomechanics, Zoological InstituteChristian Albrechts University of KielKielGermany

Personalised recommendations