Skip to main content
Log in

Oviposition by herbivorous insects induces changes in optical and mechanical properties of Prunus avium leaves

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

This study of animal–plant interaction focused on the impact of oviposition by an insect on the leaves of Prunus avium (cherries). We examined whether the oviposition by Caliroa cerasi affects leaf mechanical and spectral traits in P. avium. Three cultivars of P. avium were studied. Infested leaves had from 1 to 18 eggs and exhibited higher leaf dry mass per area (LMA) than leaves without eggs. Leaf dry weight and LMA were positively correlated with egg number per leaf. Infested leaves tended to have higher number of trichomes. Leaf thickness and material and structural resistance tended to increase in infested leaves. The reflectance across all wavelengths (500–700 nm) in leaves with larger number of eggs was higher compared to leaves without eggs. Photosynthetic performance was reduced and oxidative activity was increased in leaves with eggs. Extrafloral nectaries increased with increasing the number of eggs per leaf and thus play an important role in defense against herbivores by providing nectar rewards that attract their depredators. These responses to oviposition may be beneficial for the plants in terms of resistance to feeding larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrawal A (1998) Induced responses to herbivory and increased plant performance. Science 279:1201–1202

    Article  PubMed  CAS  Google Scholar 

  • Amo L, Jansen JJ, Dam NM, Dicke M, Visser ME (2013) Birds exploit herbivore-induced plant volatiles to locate herbivorous prey. Ecol Lett 16:1348–1355

    Article  PubMed  Google Scholar 

  • Bado S (2007) Plagas del cultivo de cerezo. Revista Fruticultura Profesional 171:14–22

    Google Scholar 

  • Baldini E, Facini O, Nerozzi F, Rossi F, Rotondi A (1997) Leaf characteristics and optical properties of different woody species. Trees 12:73–81

    Article  Google Scholar 

  • Beeskow A, Del Valle H, Rostagno C (1987) Los sistemas fisiográficos de la región árida y semiárida de la provincia del Chubut. SECYT, Puerto Madryn

    Google Scholar 

  • Bittner N, Trauer-Kizilelma U, Hilker M (2017) Early plant defence against insect attack: involvement of reactive oxygen species in plant responses to insect egg deposition. Planta 245:993–1007

    Article  PubMed  CAS  Google Scholar 

  • Blackmer T, Schepers J, Varvel G (1994) Light reflectance compared with other nitrogen stress measurements in corn leaves. Agron J 86:934–938

    Article  Google Scholar 

  • Bown A, Hall D, MacGregor K (2002) Insect footsteps on leaves stimulate the accumulation of 4-aminobutyrate and can be visualized through increased chlorophyll fluorescence and superoxide production. Plant Physiol 129:1430–1434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165:373–389. https://doi.org/10.1111/j.1469-8137.2004.01263.x

    Article  PubMed  Google Scholar 

  • Bronstein J (1998) he contribution of ant-plant protection studies to our understanding of mutualism. Biotropica 30:150–161

    Article  Google Scholar 

  • Büchel K, McDowell E, Nelson W, Descour A, Gershenzon J, Hilker M, Soderlund C, Gang DR, Fenning T, Meiners T (2012) An elm EST database for identifying leaf beetle egg induced defense genes. BMC Genom 13:242

    Article  CAS  Google Scholar 

  • Carl K (1972) On the biology, ecology and population dynamic of Caliroa cerasi (L.) (Hym., Tenthredinidae). Z Angew Entomol 71:58–83

    Article  Google Scholar 

  • Chehab W, Yao C, Henderson Z, Kim S, Braam J (2012) Arabidopsis touch-induced morphogenesis is jasmonate mediated and protects against pests. Curr Biol 22:701–706

    Article  PubMed  CAS  Google Scholar 

  • Cittadini E (2007) Sweet cherries from the end of the world: Options and constraints for fruit production systems in South Patagonia, Argentina. PhD thesis. Wageningen University, The Netherlands

  • Cittadini E, San Martino L (2007) El cultivo de cerezos en Patagonia Sur Tecnología de manejo, empaque y comercialización. Ediciones INTA 200

  • Codella S, Raffa K (2002) Desiccation of Pinus foliage induced by conifer sawfly oviposition: effect on egg viability. Ecol Entomol 27:618–621

    Article  Google Scholar 

  • Colazza S, McElfresh JS, Millar JG (2004) Identification of volatile synomones, induced by Nezara viridula feeding and oviposition on Bean spp., that attract the egg parasitoid Trissolcus basalis. J Chem Ecol 30:945–964

    Article  PubMed  CAS  Google Scholar 

  • Coley P (1983) Herbivory and defensive characteristics of tree species in a lowland tropical rain forest. Ecol Monogr 53:209–233

    Article  Google Scholar 

  • Dalin P, Björkman C (2003) Adult beetle grazing induces willow trichome defense against subsequent larval feeding. Oecologia 134:112–118

    Article  PubMed  Google Scholar 

  • Dalin P, Ågren J, Björkman C, Huttunen P, Kärkkäinen K (2008) Leaf trichome formation and plant resistance to herbivory. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Dordrecht, pp 89–105

    Chapter  Google Scholar 

  • Délano-Frier J, Sánchez-Hernández C, Tiessen A (2012) Friend or foe? Exploring the factors that determine the difference between positive and negative effects on photosynthesis in response to insect herbivory. In: Najafpour M (ed) Artificial photosynthesis. InTech, New York, pp 155–206

    Google Scholar 

  • Escobar-Bravo R, Klinkhamer PG, Leiss KA (2017) Induction of jasmonic acid-associated defenses by thrips alters host suitability for conspecifics and correlates with increased trichome densities in tomato. Plant Cell Physiol 58:622–634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fatouros NE, Lucas-Barbosa D, Weldegergis BT, Pashalidou FG, van Loon JJA, Dicke M, Harvey JA, Gols R, Huigens ME (2012) Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels. PLoS ONE 7:e43607. https://doi.org/10.1371/journal.pone.0043607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fornoff F, Gross E (2014) Induced defense mechanisms in an aquatic angiosperm to insect herbivory. Oecologia 175:173–185. https://doi.org/10.1007/s00442-013-2880-8

    Article  PubMed  Google Scholar 

  • Gish M, Mescher MC, De Moraes CM (2016) Mechanical defenses of plant extrafloral nectaries against herbivory. Commun Integr Biol 9:e1178431

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM (2007) Plant structural traits and their role in anti-herbivore defence. Perspect Plant Ecol Evol Syst 8:157–178

    Article  Google Scholar 

  • Heil M (2009) Damaged-self recognition in plant herbivore defence. Trends Plant Sci 14:356–363. https://doi.org/10.1016/j.tplants.2009.04.002

    Article  PubMed  CAS  Google Scholar 

  • Heong KL, Cheng J, Escalada MM (2015) Rice planthoppers. Ecology, Management, Socio Economics and Policy. Advanced Topics in Science and Technology in China. Zhejiang University Press, Hangzhou and Springer, Berlin Heidelberg

    Google Scholar 

  • Hilker M, Fatouros NE (2015) Plant responses to insect egg deposition. Annu Rev Entomol 60:493–515

    Article  PubMed  CAS  Google Scholar 

  • Hilker M, Fatouros NE (2016) Resisting the onset of herbivore attack: plants perceive and respond to insect eggs. Curr Opin Plant Biol 32:9–16

    Article  PubMed  Google Scholar 

  • Hilker M, Meiners T (2006) Early herbivore alert: insect eggs induce plant defense. J Chem Ecol 32:1379–1397

    Article  PubMed  CAS  Google Scholar 

  • Hilker M, Bläske V, Kobs C, Dippel C (2002) Kairomonal effects of sawfly sex pheromones on egg parasitoids. J Chem Ecol 26:2591–2601

    Article  Google Scholar 

  • Karban R, Baldwin I (1997) Induced responses to herbivory. The University of Chicago Press, Chicago, IL, p. 330

    Book  Google Scholar 

  • Koski TM, Lindstedt C, Klemola T, Troscianko J, Mäntylä E, Tyystjärvi E, Stevens M, Helander M, Laaksonen T (2017) Insect herbivory may cause changes in the visual properties of leaves and affect the camouflage of herbivores to avian predators. Behav Ecol Sociobiol 71:97

    Article  Google Scholar 

  • Little D, Gouhier-Darimont C, Bruessow F, Reymond P (2007) Oviposition by pierid butterflies triggers defense responses in Arabidopsis. Plant Physiol 143:784–800. https://doi.org/10.1104/pp.106.090837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, Schieving F, Stuefer J, Anten N (2007) The effects of mechanical stress and spectral shading on the growth and allocation of ten genotypes of a stoloniferous plant. Ann Bot 99:121–130. https://doi.org/10.1093/aob/mcl230

    Article  PubMed  Google Scholar 

  • Liu Z, Cai Y, Fang Y, Jing J, Li K (2010) Induced response in Schima superba: Effects of early-season herbivory on leaf traits and subsequent insect attack. Afr J Biotechnol 9:8731–8738

    Google Scholar 

  • Lucas-Barbosa D, van Loon J, Gols R, van Beek T, Dicke M (2012) Reproductive escape: annual plant responds to butterfly eggs by accelerating seed production. Funct Ecol 27:245–254

    Article  Google Scholar 

  • Mäntylä E, Klemola T, Haukioja E (2004) Attraction of willow warblers to sawfly-damaged mountain birches: novel function of inducible plant defences? Ecol Lett 7:915–918

    Article  Google Scholar 

  • Mäntylä E, Klemola T, Sirkiä P, Laaksonen T (2007) Low light reflectance may explain the attraction of birds to defoliated trees. Behav Ecol 19:325–330

    Article  Google Scholar 

  • Mareggiani G, Bartoloni N, Gorosito N, Laffaye C (2012) Flight detection of Caliroa cerasi L. (Hymenoptera: Tenthredinidae) adults in the Andean Region of Parallel 42, Argentina. Bol San Veg Plagas 38:233–238

    Google Scholar 

  • Markovic D, Glinwood R, Olsson U, Ninkovic V (2014) Plant response to touch affects the behaviour of aphids and ladybirds. Arth-Plant Int 8:171–181

    Article  Google Scholar 

  • Miller G, Miller E (1948) Determination of nitrogen in biological materials. Anal Chem 20:481–488

    Article  CAS  Google Scholar 

  • Mitchell C, Brennan RM, Graham J, Karley AJ (2016) Plant defense against herbivorous pests: exploiting resistance and tolerance traits for sustainable crop protection. Front Plant Sci 7:1132

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira P (1997) The ecological function of extrafloral nectaries: herbivore deterrence by visiting ants and reproductive output in Caryocar brasiliense (Caryocaraceae). Funct Ecol 11:323–330

    Article  Google Scholar 

  • Onoda Y, Hikosaka K, Hirose T (2004) Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Funct Ecol 18:419–425

    Article  Google Scholar 

  • Onoda Y, Westoby M, Adler P, Choong A, Clissold F, Cornelissen J et al (2011) Global patterns of leaf mechanical properties. Ecol Lett 14:301–312. https://doi.org/10.1111/j.1461-0248.2010.01582.x

    Article  PubMed  Google Scholar 

  • Pashalidou FG (2015) Getting prepared for future attack: induction of plant defences by herbivore egg deposition and consequences for the insect community. Wageningen University

  • Pashalidou F, Lucas-Barbosa D, van Loon J, Dicke M, Fatouros N (2013) Phenotypic plasticity of plant response to herbivore eggs: effects on resistance to caterpillars and plant development. Ecology 94:702–713

    Article  PubMed  Google Scholar 

  • Peñaflor M, Erb M, Miranda L, Werneburg A, Bento J (2011) Herbivore-induced plant volatiles can serve as host location cues for a generalist and a specialist egg parasitoid. J Chem Soc 37:1304–1313

    Google Scholar 

  • Peñuelas J, Munné-Bosch S, Llusià J, Filella I (2004) Leaf reflectance and photo- and antioxidant protection in field-grown summer-stressed Phillyrea angustifolia Optical signals of oxidative stress? New Phytol 162:115–124

    Article  Google Scholar 

  • Peschiutta M (2015) El impacto de la herbivoría por Caliroa cerasi (Hymenoptera: Tenthredinidae) sobre las relaciones hídricas, intercambio gaseoso, crecimiento y productividad del cerezo (Prunus avium L.). Universidad de Buenos Aires

  • Peschiutta ML, Bucci SJ, Scholz FG, Goldstein G (2016) Compensatory responses in plant-herbivore interactions: impacts of insects on leaf water relations. Acta Oecol 73:71–79

    Article  Google Scholar 

  • Peschiutta ML, Scholz FG, Goldstein G, Bucci SJ (2018) Herbivory alters plant carbon assimilation, patterns of biomass allocation and nitrogen use efficiency. Acta Oecol 86:9–16

    Article  Google Scholar 

  • Petzold-Maxwell J, Wong S, Arellano C, Gould F (2011) Host plant direct defence against eggs of its specialist herbivore, Heliothis subflexa. Ecol Entomol 36:700–708

    Article  Google Scholar 

  • Poorter H, Niinemets Ü, Poorter L, Wright I, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  PubMed  Google Scholar 

  • Pulice C, Packer A (2008) Simulated herbivory induces extrafloral nectary production in Prunus avium. Funct Ecol 22:801–807

    Article  Google Scholar 

  • Raffa K, Lintereur G (1988) New host records and developmental notes on the pear slug Caliroa cerasi (Hymenoptera: Tenthredinidae), feeding on Cotoneaster and Chaenomeles species Great Lakes. Entomol 21:75–79

    Google Scholar 

  • Sack L, Cowan P, Jaikumar N, Holbrook N (2003) The ‘hydrology’ of leaves: coordination of structure and function in temperate woody species. Plant Cell Environ 26:1343–1356

    Article  Google Scholar 

  • Schlesinger W, Hasey M (1981) Decomposition of chaparral shrub foliage: losses of organic and inorganic constituents from deciduous and evergreen leaves. Ecology 62:762–774

    Article  CAS  Google Scholar 

  • Schröder R, Forstreuter M, Hilker M (2005) A plant notices insect egg deposition and changes its rate of photosynthesis. Plant Physiol 138:470–477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shapiro AM, DeVay JE (1987) Hypersensitivity reaction of Brassica nigra L. (Cruciferae) kills eggs of Pieris butterflies (Lepidoptera: Pieridae). Oecologia 71:631–632. https://doi.org/10.1007/BF00379310

    Article  PubMed  CAS  Google Scholar 

  • Shaw P, Wallis D, Alspach P, Bus V, Brewer L (2004) Pear sawfly (Caliroa cerasi) (Hymenoptera: Tenthredinidae) host preference and larval development on six Pyrus genotypes. New Zeal J Crop Hort 32:257–262

    Article  Google Scholar 

  • Slaton M, Hunt E, Smith W (2001) Estimating near-infrared leaf reflectance from leaf structural characteristics. Am J Bot 88:278–284

    Article  PubMed  CAS  Google Scholar 

  • Telewski F (2006) A unified hypothesis of mechanoperception in plants. Am J Bot 93:1466–1476. https://doi.org/10.3732/ajb.93.10.1466

    Article  PubMed  Google Scholar 

  • Velikova V, Salerno G, Frati F, Peri E, Conti E, Colazza S, Loretto F (2010) Influence of feeding and oviposition by phytophagous pentatomids on photosynthesis of herbaceous plants. J Chem Ecol 36:629–641. https://doi.org/10.1007/s10886-010-9801-7

    Article  PubMed  CAS  Google Scholar 

  • Zangerl A, Hamilton J, Miller T, Crofts A, Oxborough K, Berenbaum M, de Lucia E (2002) Impact of folivory on photosynthesis is greater than the sum of its holes. Proc Natl Acad Sci USA 99:1088–1091

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Eng. Claudia Mundet and field staff from Bahía Solano S.A. Ranch for logistic support and for permission to access and use sweet cherry plantation for this study. This study was partially supported by CyT Chubut, Argentina, CONICET (PIP Grant), and ANCyT-FONCyT (PICT Grants). This work complies with Argentinean Law.

Author information

Authors and Affiliations

Authors

Contributions

MLP, FGS, and GG conceived and designed the experiments. MLP performed the experiments. MLP, FGS, and SJB analyzed the data. MLP, FGS, SJB, and GG wrote the manuscript.

Corresponding author

Correspondence to Sandra J. Bucci.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Handling Editor: Stanislav Gorb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peschiutta, M.L., Scholz, F.G., Goldstein, G. et al. Oviposition by herbivorous insects induces changes in optical and mechanical properties of Prunus avium leaves. Arthropod-Plant Interactions 12, 613–622 (2018). https://doi.org/10.1007/s11829-018-9609-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-018-9609-x

Keywords

Navigation