Interactions between wood-inhabiting fungi and termites: a meta-analytical review

  • Arleu Barbosa Viana-Junior
  • Mariana Osório Côrtes
  • Tatiana Garabini Cornelissen
  • Frederico de Siqueira Neves
Original Paper

Abstract

The foraging behavior and survivorship of termites are modified by the presence of wood-inhabiting fungi. Nonetheless, it is not clear if these interactions are beneficial, negative, or neutral for termites. We conducted a meta-analytical review to determine if the presence of wood-inhabiting fungi affects the foraging behavior and survivorship of termites. Overall, the presence of wood-inhabiting fungi in a resource used by termites was positive, increasing resource consumption by 120%, and aggregation behavior by 81%. The presence of fungi also increased termite trail-following by approximately 200% and increased survival by 136%. The results varied, however, according to the type of fungi evaluated. Decay fungi and sap-stain fungi elicited positive responses in termites, whereas molds did not affect the consumption of cellulose by termites. Amongst the decay fungi group, white-rot fungi caused the strongest and most positive response in all termite behaviors evaluated, although brown-rot fungi is known to be preferred by termites. The results of our study, therefore, suggest that wood-inhabiting fungi are potential facilitators of the foraging behavior and survivorship of termites. These results have great implications for termite biocontrol, as well as for knowledge of the ecological aspects of termite–fungi interactions.

Keywords

Decay fungi Meta-analysis Sap-stain fungi Subterranean termites Wood-rot fungi 

Notes

Acknowledgements

We thank Marina Beirão, Gabriela Duarte, Rony Peterson, Lisiex Fuzessy, Yana Reis, Ricardo Solar, Lucas Paolucci, and Luiz Eduardo Macedo-Reis for discussions, suggestions and for insightful comments on an earlier version of the manuscript. We extend special thanks to Hans Kelstrup and Flavio Camarota for comments on the text and English review. This work was supported by the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) and Graduation Program in Ecology, Conservation and Wildlife Management (ECMVS—UFMG).

Supplementary material

11829_2017_9570_MOESM1_ESM.xlsx (14 kb)
Supplementary material 1 (XLSX 14 kb)
11829_2017_9570_MOESM2_ESM.xls (106 kb)
Supplementary material 2 (XLS 105 kb)

References

  1. Amburgey TL (1979) Review and checklist of the literature on interactions between wood-inhabiting fungi and subterranean termite: 1960–1978. Sociobiology 4:279–296CrossRefGoogle Scholar
  2. Amburgey TL, Beal RH (1977) White rot inhibits termite attack. Sociobiology 3:35–38Google Scholar
  3. Cohen J (1992) A power primer. Psychol Bull 112:155–159CrossRefPubMedGoogle Scholar
  4. Cornelius ML, Daigle DJ, Connick WJ Jr, Parker A, Wunch K (2002) Responses of Coptotermes formosanus and Reticulitermes flavipes (Isoptera: Rhinotermitidae) to three types of wood rot fungi cultured on different substrates. J Econ Entomol 95:121–128. doi: 10.1603/0022-0493-95.1.121 CrossRefPubMedGoogle Scholar
  5. Cornelius ML, Daigle DJ, Connick WJ Jr, Williams KS, Lovisa MP (2003) Responses of the Formosan subterranean termite (Isoptera: Rhinotermitidae) to wood blocks inoculated with lignin-degrading fungi. Sociobiology 41:513–525Google Scholar
  6. Cornelius ML, Bland JM, Daigle DJ, Williams KS, Lovisa MP, Connick WJ Jr, Lax AR (2004) Effect of a lignin-degrading fungus on feeding preferences of formosan subterranean termite (Isoptera: Rhinotermitidae) for different commercial lumber. J Econ Entomol 97:1025–1035. doi:10.1603/0022-0493(2004)097[1025:EOALFO]2.0.CO;2Google Scholar
  7. Cornelius ML, Williams KS, Lovisa MP, DeLucca A II (2012) Aggregation and feeding behavior of the Formosan subterranean termite (Isoptera: Rhinotermitidae) on wood decayed by three species of wood rot fungi. Sociobiology 59:667–679. doi: 10.13102/sociobiology.v59i3.541 Google Scholar
  8. Costa-Leonardo AM, Casarin FE, Lima JT (2009) Chemical communication in Isoptera. Neotrop Entomol 38:1–6. doi: 10.1590/S1519-566X2009000100001 CrossRefGoogle Scholar
  9. Desch HE, Dinwoodie JM (1996) Timber: structure, properties, conversion and use, 7th edn. Macmillan Press, LondonCrossRefGoogle Scholar
  10. Erwin ST, Hwang WJ, Takeuchi M, Itoh T, Imamura Y (2008) Anatomical characterization of decayed wood in standing light red meranti and identification of the fungi isolated from the decayed area. J Wood Sci 54:233–241. doi: 10.1007/s10086-008-0947-7 CrossRefGoogle Scholar
  11. Esenther GR, Beal RH (1978) Insecticidal baits on field plot perimeters suppress Reticulitermes. J Econ Entomol 71:604–607CrossRefGoogle Scholar
  12. Gazal V, Bailez O, Viana-Bailez AM, Aguiar-Menezes EL, Menezes EB (2012) Decayed wood affecting the attraction of the pest arboretum termite Nasutitermes corniger (Isoptera: Termitidae) to resource foods. Sociobiology 59:287–295. doi: 10.13102/sociobiology.v59i1.684 CrossRefGoogle Scholar
  13. Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, Jimenez-Gasco MM et al (2008) Lignin degradation in wood-feeding insects. Proc Natl Acad Sci USA 105:12932–12937. doi: 10.1073/pnas.0805257105 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Getty GM, Haverty MI (1998) Consumption of sound and decayed Ponderosa Pine and Douglas-Fir by Reticulitermes spp. (Isoptera: Rhinotermitidae) from Northern California. J Econ Entomol 91:650–654CrossRefGoogle Scholar
  15. Gilbertson RL (1980) Wood-rotting fungi of North America. Mycologia 72:1–49. doi: 10.2307/3759417 CrossRefGoogle Scholar
  16. Grace JK (1991) Semiochemical mediation and manipularion of Reticulitermes behavior (Isoptera: Rhinotermitidae). Sociobiology 19:147–162Google Scholar
  17. Grace JK, Su NY (2001) Evidence supporting the use of termite baiting systems for long-term structural protection (Isoptera). Sociobiology 37:301–310Google Scholar
  18. Grace JK, Wilcox WW (1988) Isolation ant trail-following bioassay of decay fungus associated with Reticulitermes hesperus Banks (Isoptera: Rhinotermitidae). Pan-Pac Entomol 64:243–249Google Scholar
  19. Grace JK, Goodell BS, Jones WE, Vikas C, Jellison J (1992) Evidence for inhibition of termite (Isoptera: Rhinotermitidae) feeding by extracellular metabolites of a wood decay fungus. Proc Hawaii Entomol Soc 31:249–252Google Scholar
  20. Gurevitch J, Hedges LV (1999) Statistical issues in ecological meta-analysis. Ecology 80:1142–1149CrossRefGoogle Scholar
  21. Gurevitch J, Hedges LV (2001) Meta-analysis: combining the results of independent experiments, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  22. Haifig I, Jost C, Fourcassié V, Zana Y, Costa-Leonard AM (2015) Dynamics of foraging trails in the Neotropical termite Velocitermes heteropterus (Isoptera: Termitidae). Behav Process 118:123–129. doi: 10.1016/j.beproc.2015.06.010 CrossRefGoogle Scholar
  23. Hatakka A, Hammel KE (2010) Fungal biodegradation of lignocelluloses. In: Esser K, Hofrichter M (eds) The Mycota: a comprehensive treatise on fungi as experimental systems for basic and applied research. Industrial applications, Springer, Berlin, pp 319–340Google Scholar
  24. Heintschel BP, Kenerley CM, Gold RE (2007) Effects of Trichoderma virens fungus on the feeding behaviors of subterranean termite (Reticulitermes virginicus) Isoptera: Rhinotermitidae. Sociobiology 50:223–244Google Scholar
  25. Jayasimha P, Henderson G (2007a) Suppression of growth of a brown rot fungus, Gloeophyllum trabeum, by Formosan subterranean termites (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 100:506–511. doi:10.1603/0013-8746(2007)100[506:SOGOAB]2.0.CO;2Google Scholar
  26. Jayasimha P, Henderson G (2007b) Fungi isolated from integument and guts of Coptotermes formosanus and their antagonistic effect on Gloeophyllum trabeum. Ann Entomol Soc Am 100:703–710. doi:10.1603/0013-8746(2007)100[703:FIFIAG]2.0.CO;2Google Scholar
  27. Jones SC (1993) Effect of a decay fungus on subterranean termite (Isoptera: Rhinotermitidae) response to bait toxicant treated wood.In: Proceedings of the first international conference on urban pests 1:199–206Google Scholar
  28. Kamaluddin NN, Nakagawa-Izumi A, Nishizawa S, Fukunaga A, Doi S, Yoshimura T, Horisawa F (2016) Evidence of subterranean termite feeding deterrent produced by brown rot fungus Fibroporia radiculosa (Peck) Parmasto 1968 (Polyporales, Fomitopsidaceae). Insects 7:41CrossRefPubMedCentralGoogle Scholar
  29. Kirker GT, Wagner TL, Diehl SV (2012) Relationship between wood-inhabiting fungi and Reticulitermes spp. in four forest habitats of northeastern Mississippi. Int Biodeter Biodegr 72:18–25. doi: 10.1016/j.ibiod.2012.04.011 CrossRefGoogle Scholar
  30. Lenz M, Ruyooka DBA, Howick CD (1980) The effect of brown and white rot fungi on wood consumption and survival of Coptotermes lacteus (Froggatt) (Isoptera: Rhinotermitidae) in a laboratory bioassay. J Appl Entomol 89:344–362. doi: 10.1111/j.1439-0418.1980.tb03476.x Google Scholar
  31. Little NS, Riggins JJ, Schultz TP, Londo AJ, Ulyshen MD (2012a) Feeding preference of native subterranean termites (Isoptera: Rhinotermitidae: Reticulitermes) for wood containing bark beetle pheromones and blue-stain fungi. J Insect Behav 25:197–206. doi: 10.1007/s10905-011-9293-5 CrossRefGoogle Scholar
  32. Little NS, Blount NA, Londo AJ, Kitchens SC, Schultz TP, McConnell TE, Riggins JJ (2012b) Preference of Formosan subterranean termites for blue-stained southern yellow pine sapwood. J Econ Entomol 105:1640–1644CrossRefPubMedGoogle Scholar
  33. Little NS, Schultz TP, Diehl SV, Nicholas DD, Londo AJ, Musser FR, Riggins JJ (2013) Field evaluations of subterranean termite preference for sap-stain inoculated wood. J Insect Behav 26:649–659. doi: 10.1007/s10905-013-9380-x CrossRefGoogle Scholar
  34. Matsumura F, Coppel HC, Tai A (1968) Isolation and identification of termite trail-following pheromone. Nature 219:963–964. doi: 10.1038/219963a0 CrossRefPubMedGoogle Scholar
  35. Mengersen K, Jennions MD, Schmid CH (2013) Statistical models for the meta-analysis of non independent data. In: Koricheva J, Gurevitch J, Mengersen K (eds) Handbook of meta-analysis in ecology and evolution. Princeton University Press, Princeton and Oxford, pp 255–283Google Scholar
  36. Moein SI, Rust MK (1992) The effect of wood degradation by fungi on the feeding and survival of the West Indian drywood Termite, Cryptotermes brevis (Isoptera: Kalotermitidae). Sociobiology 20:29–39Google Scholar
  37. Osono T (2007) Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 22:955–974. doi: 10.1007/s11284-007-0390-z CrossRefGoogle Scholar
  38. Parkinson D, Visser S, Whittaker JB (1979) Effects of collembolan grazing on fungal colonization of leaf litter. Soil Biol Biochem 11:529–535. doi: 10.1016/0038-0717(79)90013-0 CrossRefGoogle Scholar
  39. Peralta RCG, Menezes EB, Carvalho AG, Aguiar-Menezes EL (2003) Feeding preference of subterranean termites for forest species associated or not a wood-decaying fungi. Floresta e Ambien 10:58–63Google Scholar
  40. Peralta RCG, Menezes EB, Carvalho AG, Aguiar-Menezes EL (2004) Wood consumption of forest species by subterranean termites (Isoptera) under field conditions. Revista Árvore 28:283–289CrossRefGoogle Scholar
  41. R Core Team (2016). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  42. Riggins JJ, Little NS, Eckhardt LG (2014) Correlation between infection by ophiostomatoid fungi and the presence of subterranean termites in loblolly pine (Pinus taeda L.) roots. Agric For Entomol 16:260–264. doi: 10.1111/afe.12053 CrossRefGoogle Scholar
  43. Robbins C, Morrel J (2006) Mold, housing and wood. Western Wood Products Association, PortlandGoogle Scholar
  44. Rojas MG, Morales-Ramos JA (2001) Bait matrix for delivery of chitin synthesis inhibitors to the Formosan subterranean termite (Isoptera: Rhinotermitidae). J Econ Entomol 94:506–510. doi: 10.1603/0022-0493-94.2.506 CrossRefPubMedGoogle Scholar
  45. Rosenberg MS, Adams DC, Gurevitch J (2000) MetaWin: statistical software for meta-analysis ver. 2.1.3.4. Sinauer Associates, SunderlandGoogle Scholar
  46. Rosenthal R (1979) The ‘file drawer problem’ and tolerance for null results. Psychol Bull 86:638–641CrossRefGoogle Scholar
  47. Ruyooka DBA, Edwards CBH (1981) Effect of fungal-termite associations on the natural resistance of selected eucalypt timbers under laboratory and fields conditions. Mater Org 15:263–285Google Scholar
  48. Senanayake PD, Mohotti K, Paranagama PA (2015) Bioactive constituents of wood rot extract of tea, Camellia sinensis L.O. Kuntze against alates of low country live wood termite Glyptotermes dilatatus Bugnion and Popoff (Isoptera: Kalotermitidae). SpringerPlus. doi: 10.1186/s40064-015-1513-6 PubMedPubMedCentralGoogle Scholar
  49. Stokland JN, Siitonen J, Jonsson BG (2012) Biodiversity in dead wood. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  50. Su NY (2005) Directional change in tunneling of subterranean termites (Isoptera: Rhinotermitidae) in response to decayed wood attractants. J Econ Entomol 98:471–475. doi: 10.1603/0022-0493-98.2.471 CrossRefPubMedGoogle Scholar
  51. Su NY, Scheffrahn RH (1993) Laboratory evaluation of two chitin synthesis inhibitors, hexaflumuron and diflubenzuron, as bait toxicants against Formosan and eastern subterranean termites (Isoptera: Rhinotermitidae). J Econ Entomol 86:1453–1457. doi: 10.1093/jee/86.5.1453 CrossRefGoogle Scholar
  52. Viechtbauer, W. (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36:1-48. URL: http://www.jstatsoft.org/v36/i03/
  53. Waller DA, La Fage JP (1987) Seasonal patterns in foraging groups of Coptotermes formosanus (Rhinotermitidae). Sociobiology 13:173–181Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Laboratório de Ecologia de Insetos, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Programa de Pós-graduação em Ecologia, Conservação e Manejo da Vida Silvestre, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Departamento de Ciências NaturaisUniversidade Federal de São João Del-ReiSão João Del ReiBrazil

Personalised recommendations