Advertisement

Arthropod-Plant Interactions

, Volume 11, Issue 5, pp 731–740 | Cite as

Plant–floral visitor network structure in a smallholder Cucurbitaceae agricultural system in the tropics: implications for the extinction of main floral visitors

  • Víctor Parra-Tabla
  • María José Campos-Navarrete
  • Gerardo Arceo-GómezEmail author
Original Paper

Abstract

Animal pollination is responsible for the majority of the human food supply. Understanding pollination dynamics in agricultural systems is thus essential to help maintain this ecosystem service in the face of human disturbances. Surprisingly, our understanding of plant–pollinator interactions in widely distributed smallholder agricultural systems is still limited. Knowledge of pollination dynamics in these agricultural systems is necessary to fully assess how human disturbances may affect pollination services worldwide. In this study, we describe the structure of a plant–floral visitor network in a smallholder Cucurbitaceae agricultural system. We further identify the main floral visitors of these crops and tested their importance by simulating how their extinction affected network structure and robustness. The observed network was highly connected and generalized but it was neither nested nor compartmentalized. Our results suggest that the structure of agricultural plant–pollinator networks could be inherently different from those in natural communities. These differences in network structure may reflect differences in spatial distribution of floral resources between agricultural and natural systems. We identified Augochlora nigrocyanea and Peponapis limitaris as the two most frequent floral visitors. However, removal of these species did not affect network structure or its robustness, suggesting high levels of interaction rewiring. To our knowledge, this is one of the first studies to describe the structure of a plant–floral visitor network in diverse agricultural systems in the tropics. We emphasize the need for more studies that evaluate network structure in agricultural systems if we want to fully elucidate the impact of human disturbances on this key ecosystem service.

Keywords

Crops Cucurbitaceae Interaction network Pollination Smallholder agriculture Tropics 

Notes

Acknowledgements

We thank two anonymous reviewers for their helpful comments on this manuscript. We thank CONACyT-SISIERRA (950604), IFS (B2523-1) and FMCNAC (C2-96–263) for financial support to VPT; and CONACyT to GAG.

References

  1. Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 9:968–980CrossRefPubMedGoogle Scholar
  2. Aizen MA, Sabatino M, Tylianakis JM (2012) Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335:1486–1489CrossRefPubMedGoogle Scholar
  3. Alarcón R, Waser NM, Ollerton J (2008) Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 12:1796–1807CrossRefGoogle Scholar
  4. Allen-Wardell G, Bernhardt P, Bitner R et al (1998) The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv Biol 12:8–17CrossRefGoogle Scholar
  5. Almeida-Neto M, Guimarães P, Guimarães PR, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117(8):1227–1239CrossRefGoogle Scholar
  6. Ashworth L, Quesada M, Casas A, Aguilar R, Oyama K (2009) Pollinator-dependent food production in Mexico. Biol Conserv 142:1050–1057CrossRefGoogle Scholar
  7. Bartomeus I (2013) Understanding linkage rules in plant-pollinator networks by using hierarchical models that incorporate pollinator detectability and plant traits. PLoS ONE 8:e69200CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bascompte J, Jordano P (2007) Plant animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593CrossRefGoogle Scholar
  9. Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant–animal mutualistic networks. Proc Natl Acad Sci USA 100:9383–9387CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433CrossRefPubMedGoogle Scholar
  11. Basu P, Bhattacharya R, Lannetta PP (2011) A decline in pollinator dependent vegetable crop productivity in India indicates pollination limitation and consequent agro-economic crises. Nat Precedings hdl:10101/npre.2011.6044.1Google Scholar
  12. Basu P, Parui AK, Chatterjee S, Dutta A, Chakraborty P, Roberts S, Smith B (2016) Scale dependent drivers of wild bee diversity in tropical heterogeneous agricultural landscapes. Ecol Evol 6:6983–6992CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bawa KS, Kress WJ, Nadkarni NM, Lele S, Raven PH, Janzen DH et al (2004) Tropical ecosystems into the 21st century. Science 306:227–228CrossRefPubMedGoogle Scholar
  14. Bernhardt CE, Mitchell RJ, Michaels HJ (2008) Effects of population size and density on pollinator visitation, pollinator behavior, and pollen tube abundance in Lupinus perennis. Int J Plant Sci 169:944–953CrossRefGoogle Scholar
  15. Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:1CrossRefGoogle Scholar
  16. Blüthgen N, Menzel F, Hovestadt T, Fiala B, Blüthgen N (2007) Specialization, constraints and conflicting interests in mutualistic networks. Curr Biol 17:341–346CrossRefPubMedGoogle Scholar
  17. Burkle LA, Alarcón R (2011) The future of plant–pollinator diversity: understanding interaction networks across time, space, and global change. Am J Bot 98:528–538CrossRefPubMedGoogle Scholar
  18. Campos-Navarrete MJ, Parra-Tabla V, Ramos-Zapata J, Díaz-Castelazo C, Reyes-Novelo E (2013) Structure of plant–Hymenoptera networks in two coastal shrub sites in Mexico. Arth Plant Int 7:607–617CrossRefGoogle Scholar
  19. Cane JH (2008) A native ground-nesting bee (Nomia melanderi) sustainably managed to pollinate alfalfa across an intensively agricultural landscape. Apidologie 39:315–323CrossRefGoogle Scholar
  20. Canto-Aguilar A, Parra-Tabla V (2000) Importance of conserving alternative pollinators: assessing the pollination efficiency of the squash bee, Peponapis limitaris in Cucurbita moschata (Cucurbitaceae). J Insect Conserv 4:203–210CrossRefGoogle Scholar
  21. Chaplin-Kramer R, Dombeck E, Gerber J, Knuth KA, Mueller ND, Mueller M, Ziv G, Klein A-M (2014) Global malnutrition overlaps with pollinator-dependent micronutrient production. Proc R Soc B 281:20141799CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chico-Ponce de León PA (1999) Atlas de procesos territoriales de Yucatán. Universidad Autónoma de Yucatán Mérida YucatánGoogle Scholar
  23. Core Team R (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  24. Dalsgaard B, Trøjelsgaard K, Martín González AM, Nogués-Bravo D, Ollerton J, Petanidou T et al (2013) Historical climate-change influences modularity and nestedness of pollination networks. Ecography 36:1331–1340CrossRefGoogle Scholar
  25. Dormann CF, Gruber B, Fruend J (2008) Introducing the bipartite package: analysing ecological networks. R News 8:8–11Google Scholar
  26. Edwards FA, Edwards DP, Sloan S, Hamer KC (2014) Sustainable management in crop monocultures: the impact of retaining forest on oil palm yield. PLoS ONE 9:e91695CrossRefPubMedPubMedCentralGoogle Scholar
  27. Garibaldi LA, Steffan-Dewenter I, Winfree R et al (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611CrossRefPubMedGoogle Scholar
  28. Grindeland JM, Sletvold N, Ims RA (2005) Effects of floral display size and plant density on pollinator visitation rate in a natural population of Digitalis purpurea. Funct Ecol 19:383–390CrossRefGoogle Scholar
  29. Guimãraes P, Guimãraes PR (2005) ANINHADO 1.0. (www. guimares.bio.br)Google Scholar
  30. Hegland SJ, Boeke L (2006) Relationships between the density and diversity of floral resources and flower visitor activity in a temperate grassland community. Ecol Entomol 31:532–538CrossRefGoogle Scholar
  31. Hoehn P, Tscharntke T, Tylianakis JM, Steffan-Dewenter I (2008) Functional group diversity of bee pollinators increases crop yield. Proc R Soc Lond Biol 275:2283–2291CrossRefGoogle Scholar
  32. Hurd PD, Linsley EG, Whitaker TW (1971) Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated Cucurbita. Evolution 21:218–234Google Scholar
  33. Jordano P, Vázquez D, Bascompte J (2009) Redes complejas de interacciones mutualistas planta-animal. In: Medel R, Aizen M, Zamora R (eds) Ecología y evolución de interacciones planta-animal: conceptos y aplicaciones. Editorial Universitaria, Santiago de Chile, pp 17–41Google Scholar
  34. Julier HE, Roulston TH (2009) Wild bee abundance and pollination service in cultivated pumpkins: farm management, nesting behavior and landscape effects. J Econ Entomol 102:563–573CrossRefPubMedGoogle Scholar
  35. Kaiser-Bunbury CN, Muff S, Memmott J, Müller CB, Caflisch A (2010) The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol Lett 13:442–452CrossRefPubMedGoogle Scholar
  36. Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant–pollinator interactions. Annu Rev Ecol Evol Syst 29:83–112CrossRefGoogle Scholar
  37. Kevan PG, Viana BF (2003) The global decline of pollination services. Biodiversity 4:3–8CrossRefGoogle Scholar
  38. King C, Ballantyne G, Willmer PG (2013) Why flower visitation is a poor proxy for pollination: measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol Evol 4:811–818CrossRefGoogle Scholar
  39. Klein AM, Steffan-Dewenter I, Tscharntke T (2003) Fruit set of highland coffee increases with the diversity of pollinating bees. Proc R Soc Lond Biol 270:955–961CrossRefGoogle Scholar
  40. Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc Lond Biol 274:303–313CrossRefGoogle Scholar
  41. Klein AM, Cunningham SA, Bos M, Steffan-Dewenter I (2008) Advances in pollination ecology from tropical plantation crops. Ecology 89:935–943CrossRefPubMedGoogle Scholar
  42. Koski MH, Meindl GA, Arceo-Gomez G, Wolowoski M, LeCroy KA, Ashman TL (2015) Plant–flower visitor networks in a serpentine metacommunity: assessing traits associated with keystone plant species. Arthropod-Plant Int 9:9–21CrossRefGoogle Scholar
  43. Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci USA 99:16812–16816CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kunin WE (1993) Sex and the single mustard: population density and pollinator behavior effects on seed-set. Ecology 7:2145–2160CrossRefGoogle Scholar
  45. Kunin WE (1997) Population size and density effects in pollination: pollinator foraging and plant reproductive success in experimental arrays of Brassica kaber. J Ecol 225–234Google Scholar
  46. Marquitti FMD, Guimarães PR, Pires MM, Bittencourt LF (2014) MODULAR: software for the autonomous computation of modularity in large network sets. Ecography 37:221–224CrossRefGoogle Scholar
  47. Meléndez V, Magaña-Rueda S, Parra-Tabla V, Ayala R, Navarro J (2002) Diversity of native bee visitors of cucurbit in Yucatán, México. J Insect Conserv 6:135–147CrossRefGoogle Scholar
  48. Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc R Soc Lond B 271:2605–2611CrossRefGoogle Scholar
  49. Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant–pollinator interactions. Ecol Lett 10:710–717CrossRefPubMedGoogle Scholar
  50. Morse RA, Calderone NW (2000) The value of honey bee pollination in the United States. Bee Culture 128:1–15Google Scholar
  51. Morton JF (2007) The impact of climate change on smallholder and subsistence agriculture. Proc Natl Acad Sci USA 104:19680–19685CrossRefPubMedPubMedCentralGoogle Scholar
  52. Oksanen JF, Blanchet G, Kindt R et al. (2015) vegan: Community ecology package. R package version 2.3-1Google Scholar
  53. Olesen JM, Jordano P (2002) Geographic patterns in plant–pollinator mutualistic networks. Ecology 83:2416–2424Google Scholar
  54. Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci USA 104:19891–19896CrossRefPubMedPubMedCentralGoogle Scholar
  55. Padrón B, Traveset A, Biedenweg T, Díaz D, Nogales M, Olesen JM (2009) Impact of alien plant invaders on pollination networks in two archipelagos. PLoS ONE 4:e6275CrossRefPubMedPubMedCentralGoogle Scholar
  56. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353CrossRefPubMedGoogle Scholar
  57. Ramos-Jiliberto R, Valdovinos FS, Moisset de Espanés P, Flores JD (2012) Topological plasticity increases robustness of mutualistic networks. J Anim Ecol 81:896–904CrossRefPubMedGoogle Scholar
  58. Robinson RA, Sutherland WJ (2002) Post-war changes in arable farming and biodiversity in Great Britain. J App Ecol 39:157–176CrossRefGoogle Scholar
  59. Schleuning M, Fründ J, Klein AM, Abrahamczyk S, Alarcón R, Albrecht M et al (2012) Specialization of mutualistic interaction networks decreases toward tropical latitudes. Curr Biol 22:1925–1931CrossRefPubMedGoogle Scholar
  60. Schmook B, Vance C (2009) Agricultural policy, market barriers, and deforestation: the case of Mexico’s southern Yucatán. World Dev 37:1015–1025CrossRefGoogle Scholar
  61. Smithson JB, Lenne JM (1996) Varietal mixtures: a viable strategy for sustainable productivity in subsistence agriculture. Ann App Biol 128:127–158CrossRefGoogle Scholar
  62. Sowig P (1989) Effects of flowering plant’s patch size on species composition of pollinator communities, foraging strategies, and resource partitioning in bumblebees (Hymenoptera: Apidae). Oecologia 78:550–558CrossRefPubMedGoogle Scholar
  63. Stang M, Klinkhamer PG, Van der Meijden E (2007) Asymmetric specialization and extinction risk in plant–flower visitor webs: a matter of morphology or abundance? Oecologia 151:442–453CrossRefPubMedGoogle Scholar
  64. Tepedino V (1981) The pollination efficiency of squash bee (Peponapis pruinosa) and honey bee (Apis mellifera) on summer squash (Cucurbita pepo). J Kansas Entomol Soc 54:359–377Google Scholar
  65. Terán S (2009) La milpa de los mayas. Mérida, UNAMGoogle Scholar
  66. Traveset A, Heleno R, Chamorro S, Vargas P, McMullen CK, Castro-Urgal R et al (2013) Invaders of pollination networks in the Galápagos Islands: emergence of novel communities. Proc R Soc Lond B 280:20123040CrossRefGoogle Scholar
  67. Trøjelsgaard K, Olesen JM (2013) Macroecology of pollination networks. Glob Ecol Biog 22:149–162CrossRefGoogle Scholar
  68. Tylianakis JM (2013) The global plight of pollinators. Science 339:1532–1533CrossRefPubMedGoogle Scholar
  69. Vanbergen AJ (2013) Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ 11:251–259CrossRefGoogle Scholar
  70. Vázquez DP (2005) Degree distribution in plant–animal mutualistic networks: forbidden links or random interactions? Oikos 108:421–426CrossRefGoogle Scholar
  71. Vázquez DP, Aizen MA (2004) Asymmetric specialization: a pervasive feature of plant-pollinator interactions. Ecology 84:2493–2501CrossRefGoogle Scholar
  72. Vázquez DP, Blüthgen N, Cagnolo L, Chacoff NP (2009) Uniting pattern and process in plant–animal mutualistic networks: a review. Ann Bot 103:1445–1457CrossRefPubMedPubMedCentralGoogle Scholar
  73. Vieira MC, Almeida-Neto M (2015) A simple stochastic model for complex coextinctions in mutualistic networks: robustness decreases with connectance. Ecol Lett 18:144–152CrossRefPubMedGoogle Scholar
  74. Westphal C, Steffan-Dewenter I, Tscharntke T (2003) Mass flowering crops enhance pollinator densities at a landscape scale. Ecol Lett 6:961–965CrossRefGoogle Scholar
  75. Whitaker TW, Cutler HC (1965) Cucurbits and cultures in the Americas. Econ Bot 19:344–349CrossRefGoogle Scholar
  76. Willis DS, Kevan PG (1995) Foraging dynamics of Peponapis pruinosa (Hymenoptera: Anthophoridae) on pumpkin (Cucurbita pepo) in southern Ontario. Can Entomol 127:167–175CrossRefGoogle Scholar
  77. Winfree R, Bartomeus I, Cariveau DP (2011) Native pollinators in anthropogenic habitats. Ann Rev Ecol Evol Sys 42:1–22CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Tropical EcologyUnversity of YucatanMéridaMexico
  2. 2.División de Estudios de Posgrado e Investigación, Instituto Tecnológico de TizimínTecnológico Nacional de MéxicoTizimínMexico
  3. 3.Department of Biological SciencesEast Tennessee State UniversityJohnson CityUSA

Personalised recommendations