Advertisement

Arthropod-Plant Interactions

, Volume 11, Issue 4, pp 591–602 | Cite as

cis-Jasmone primes defense pathways in tomato via emission of volatile organic compounds and regulation of genes with consequences for Spodoptera exigua oviposition

  • Joseph O. Disi
  • Simon Zebelo
  • Esther Ngumbi
  • Henry Y. Fadamiro
Original Paper

Abstract

The role of cis-Jasmone (CJ) in priming plant defense against insect feeding is well documented in the literature. However, little is known about the role of CJ in mediating oviposition behavior of insects via changes in emission of volatile organic compounds (VOCs). Here, we hypothesized that foliar application of CJ will prime induction of plant defense in tomato via enhanced emission of VOCs with consequences for oviposition by Spodoptera exigua, an important pest of tomato. First, we quantified VOCs and the transcript levels of key genes that encode VOC biosynthesis in CJ-treated plants with S. exigua caterpillar infestation (CJI), untreated plants with S. exigua caterpillar infestation (UI), CJ-treated plants without S. exigua caterpillar infestation (CJ), and untreated plants without S. exigua caterpillar infestation (U). Next, oviposition preference of S. exigua was compared between CJI and UI, and between CJ and U. Gas chromatograph coupled-mass spectrometry (GC-MS) analyses showed that several key plant VOCs, including green leaf volatiles, monoterpenes, and a sesquiterpene, were emitted in significantly higher amounts in CJI compared to UI, CJ, or U. Consistent with the GC-MS results, the transcript levels of certain terpene synthase genes involved in the biosynthesis of many VOCs were higher in CJI plants. Consequently, S. exigua laid fewer numbers of eggs on CJI than UI. Moreover, in an in vitro oviposition choice test using filter paper, S. exigua laid significantly fewer eggs on filter papers containing VOCs from CJI compared to UI. These results indicate that CJ treatment followed by caterpillar infestation can prime tomato plant defense with potential ramifications for insect oviposition.

Keywords

Beet armyworm Oviposition preference Caterpillar Terpene synthase genes VOCs 

Notes

Acknowledgements

The authors thank Dr. Rammohan Balusu for assisting with collection and analysis of headspace VOCs. This research was supported in part by the Alabama Agricultural Experiment Station/Auburn University.

Supplementary material

11829_2017_9503_MOESM1_ESM.docx (128 kb)
Supplementary material 1 (DOCX 127 KB)

References

  1. Ajayi OE, Balusu R, Morawo TO, Zebelo S, Fadamiro H (2015) Semiochemical modulation of host preference of Callosobruchus maculatus on legume seeds. J Stored Prod Res 63:31–37. doi: 10.1016/j.jspr.2015.05.003 CrossRefGoogle Scholar
  2. Bernays EA, Chapman RF (2000) Plant secondary compounds and grasshoppers: beyond plant defenses. J Chem Ecol 26(8):1773–1794CrossRefGoogle Scholar
  3. Birkett MA, Campbell CAM, Chamberlain K, Guerrier E, Hick AJ et al (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci USA 97:9329–9334. doi: 10.1073/pnas.160241697 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bruce TJ, Pickett J (2011) Perception of plant volatile blends by herbivorous insects-finding the right mix. Phytochemistry 72:1605–1611. doi: 10.1016/j.phytochem.2011.04.011 CrossRefPubMedGoogle Scholar
  5. Bruce T, Pickett J, Smart L (2003a) cis-Jasmone switches on plant defence against insects. Pestic Outlook 14:96. doi: 10.1039/b305499n CrossRefGoogle Scholar
  6. Bruce TJA, Martin JL, Pickett JA, Pye BJ, Smart LE et al (2003b) cis-Jasmone treatment induces resistance in wheat plants against the grain aphid, Sitobion avenae (Fabricius) (Homoptera: Aphididae). Pest Manag Sci 59:1031–1036. doi: 10.1002/ps.730 CrossRefPubMedGoogle Scholar
  7. Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274. doi: 10.1016/j.tplants.2005.04.003 CrossRefPubMedGoogle Scholar
  8. Bruce TJA, Matthes MC, Chamberlain K, Woodcock CM, Mohib A et al (2008) cis-Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proc Natl Acad Sci USA 105:4553–4558. doi: 10.1073/pnas.0710305105 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–216. doi: 10.1016/S1360-1385(02)02244-6 CrossRefPubMedGoogle Scholar
  10. Conrath U, Beckers GJM, Flors V, García-Agustín P, Jakab G et al (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071. doi: 10.1094/MPMI-19-1062 CrossRefPubMedGoogle Scholar
  11. Damodaram KJP, Kempraj V, Aurade RM, Venkataramanappa RK, Nandagopal B et al (2014) Oviposition site-selection by Bactrocera dorsalis is mediated through an innate recognition template tuned to†¯ɣ-Octalactone. PLoS ONE 9:9–14. doi: 10.1371/journal.pone.0085764 Google Scholar
  12. De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580. doi: 10.1038/35069058 CrossRefPubMedGoogle Scholar
  13. Delaney KJ, Wawrzyniak M, Lemańczyk G, Wrzesińska D, Piesik D (2013) Synthetic cis-Jasmone exposure induces wheat and barley volatiles that repel the pest cereal leaf beetle, Oulema melanopus L. J Chem Ecol 39:620–629. doi: 10.1007/s10886-013-0281-4 CrossRefPubMedGoogle Scholar
  14. Dewhirst SY, Birkett MA, Loza-Reyes E, Martin JL, Pye BJ et al (2012) Activation of defence in sweet pepper, Capsicum annum, by cis-Jasmone, and its impact on aphid and aphid parasitoid behaviour. Pest Manag Sci 68:1419–1429. doi: 10.1002/ps.3326 CrossRefPubMedGoogle Scholar
  15. Du Y, Poppy GUYM, Powell W, Pickett JA, Wadhams LJ, Woodcock CM (1998) Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J Chem Ecol 24:1355–1368CrossRefGoogle Scholar
  16. Egger B, Koschier EH (2014) Behavioural responses of Frankliniella occidentalis Pergande larvae to methyl jasmonate and cis-Jasmone. J Pest Sci 87:53–59. doi: 10.1007/s10340-013-0532-8 CrossRefGoogle Scholar
  17. Falara V, Akhtar TA, Nguyen TTH, Spyropoulou EA, Bleeker PM et al (2011) The tomato Terpene Synthase Gene Family. Plant Physiol 157(2):770–789CrossRefPubMedPubMedCentralGoogle Scholar
  18. Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716. doi: 10.1073/pnas.87.19.7713 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gols R, Roosjen M, Dijkman H, Dicke M (2003) Induction of direct and indirect plant responses by Jasmonic acid, low spider mite densities, or a combination of Jasmonic acid treatment and spider mite infestation. J Chem Ecol 29:2651–2666. doi: 10.1023/B:JOEC.0000008010.40606.b0 CrossRefPubMedGoogle Scholar
  20. Greenberg SM, Sappington TW, Liu T-X (2002) Beet armyworm (Lepidoptera: Noctuidae) host plant preferences for oviposition. Environ Entomol 142–148.Google Scholar
  21. Gripenberg S, Mayhew PJ, Parnell M, Roslin T (2010) A meta-analysis of preference-performance relationships in phytophagous insects. Ecol Lett 13:383–393. doi: 10.1111/j.1461-0248.2009.01433.x CrossRefPubMedGoogle Scholar
  22. Hegde M, Oliveira JN, da Costa JG, Loza-Reyes E, Bleicher E et al (2012) Aphid antixenosis in cotton is activated by the natural plant defence elicitor cis-Jasmone. Phytochemistry 78:81–88. doi: 10.1016/j.phytochem.2012.03.004 CrossRefPubMedGoogle Scholar
  23. Heil M, Adame-Álvarez RM (2010) Short signalling distances make plant communication a soliloquy. Biol Lett 6:843–845. doi: 10.1098/rsbl.2010.0440 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Heil M, Ton J (2008) Long-distance signalling in plant defence. Trends Plant Sci 13:264–272. doi: 10.1016/j.tplants.2008.03.005 CrossRefPubMedGoogle Scholar
  25. Heitz T, Bergey DR, Ryan CA (1997) A gene encoding a chloroplast-targeted lipoxygenase in tomato leaves is transiently induced by wounding, systemin, and methyl jasmonate. Plant Physiol 114(3):1085–1093CrossRefPubMedPubMedCentralGoogle Scholar
  26. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol.59:4166. 10.1146/annurev.arplant.59.032607.092825Google Scholar
  27. Howe GA, Lee GI, Itoh A, Li L, DeRocher AE (2000) Cytochrome P450-dependent metabolism of oxylipins in tomato cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase. Plant Physiol 2000,123 (2):711–724.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kautz S, Trisel JA, Ballhorn DJ (2014) Jasmonic acid enhances plant cyanogenesis and resistance to herbivory in Lima bean. J Chem Ecol 40:1186–1196. doi: 10.1007/s10886-014-0524-z CrossRefPubMedGoogle Scholar
  29. Koch T, Bandemer K, Boland W (1997) Biosynthesis of cis-Jasmone: a pathway for the inactivation and the disposal of the plant stress hormone jasmonic acid to the gas phase? Helvetica Chim Acta 80:838–850CrossRefGoogle Scholar
  30. Kost C, Heil M (2006) Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. J Ecol 94:619–628. doi: 10.1111/j.1365-2745.2006.01120.x CrossRefGoogle Scholar
  31. Lange WH, Bronson L (1981) Insect pests of tomatoes. Annu Rev Entomol 26:345–371. doi: 10.1146/annurev.en.26.010181.002021 CrossRefGoogle Scholar
  32. Lombarkia N, Derridj S (2008) Resistance of apple trees to Cydia pomonella egg-laying due to leaf surface metabolites. Entomol Exp Appl 128(1), 57–65CrossRefGoogle Scholar
  33. Loughlin JH, Manukian A, Heath RR, Tumlinson JH (1994) Diurnal cycle emission of induced volatile terpenoids by herbivore-injured cotton plants. Proc Natl Acad Sci USA 91:11836–11840CrossRefGoogle Scholar
  34. Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CMJ, et al. (2016) Recognizing plant defense priming. Trends Plant Sci doi: 10.1016/j.tplants.2016.07.009 PubMedGoogle Scholar
  35. Matthes MC, Bruce TJA, Ton J, Verrier PJ, Pikett JA et al (2010) The transcriptome of cis-Jasmone-induced resistance in Arabidopsis thaliana and its role in indirect defence. Planta 232:1163–1180. doi: 10.1007/s00425-010-1244-4 CrossRefPubMedGoogle Scholar
  36. Menzel TR, Weldegergis BT, David A, Bolad W, Gols R et al (2014) Synergism in the effect of prior jasmonic acid application on herbivore-induced volatile emission by Lima bean plants: transcription of a monoterpene synthase gene and volatile emission. J Exp Bot 65:4821–4831. doi: 10.1093/jxb/eru242 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Moraes MCB, Birkett MA, Gordon-Weeks R, Smart LE, Martin JL et al (2008) cis-Jasmone induces accumulation of defence compounds in wheat, Triticum aestivum. Phytochemistry 69:9–17. doi: 10.1016/j.phytochem.2007.06.020 CrossRefPubMedGoogle Scholar
  38. Moraes MCB, Laumann RA., Pareja M, Sereno, FTPS, Michereff MFF, et al. (2009) Attraction of the stink bug egg parasitoid Telenomus podisi to defence signals from soybean activated by treatment with cis-Jasmone. Entomol Exp Appl 131:178–188. doi: 10.1111/j.1570-7458.2009.00836.x CrossRefGoogle Scholar
  39. Moz R, Murtazina R, Nylin S (2012) Nonvolatile chemical cues affect host-plant ranking by Gravid Polygonia c-album females. Z Naturforsch C 67(1–2):93–102.Google Scholar
  40. Ngumbi E, Chen L, Fadamiro HY (2009) Comparative GC-EAD responses of a specialist (Microplitis croceipes) and a generalist (Cotesia marginiventris) parasitoid to cotton volatiles induced by two caterpillar species. J Chem Ecol 35:1009–1020. doi: 10.1007/s10886-009-9700-y CrossRefPubMedGoogle Scholar
  41. Oluwafemi S, Dewhirst SY, Veyrat N, Veyrat N, Powers S et al (2013) Priming of production in maize of volatile organic defence compounds by the natural plant activator cis-Jasmone. PLoS ONE 8:e62299. doi: 10.1371/journal.pone.0062299 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331CrossRefPubMedPubMedCentralGoogle Scholar
  43. Park K, Paul D, Kim E, Kloepper JW (2007) Hyaluronic acid of Streptococcus sp. as a potent elicitor for induction of systemic resistance against plant diseases. World J Microbiol Biotechnol 24:1153–1158. doi: 10.1007/s11274-007-9587-0 CrossRefGoogle Scholar
  44. Paschold A, Halitschke R, Baldwin IT (2006) Using “mute” plants to translate volatile signals. Plant J 45:275–291. doi: 10.1111/j.1365-313X.2005.02623.x CrossRefPubMedGoogle Scholar
  45. Pauwels L, Inze´ D, Goossens A (2009) Jasmonate-inducible gene: what does it mean? Plant J 14:8791. doi: 10.1016/j.tplants.2008.11.005 Google Scholar
  46. Peng J, van Loon JJA, Zheng S, Dicke M (2011) Herbivore-induced volatiles of cabbage (Brassica oleracea) prime defence responses in neighbouring intact plants. Plant Biol 13:276–284. doi: 10.1111/j.1438-8677.2010.00364.x CrossRefPubMedGoogle Scholar
  47. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 29(9):2002–2007CrossRefGoogle Scholar
  48. Pickett JA, Birkett MA, Bruce TJA, Chamberlain K, Gordon-Weeks R et al (2007) Developments in aspects of ecological phytochemistry: the role of cis-Jasmone in inducible defence systems in plants. Phytochemistry 68:2937–2945. doi: 10.1016/j.phytochem.2007.09.025 CrossRefPubMedGoogle Scholar
  49. Pope TW, Campbell CAM, Hardie J, Wadhams LJ (1997) Treating hop plants with (Z)-jasmone increases colonization by Phorodon humuli (Hemiptera: Aphididae) spring migrantsGoogle Scholar
  50. Proffit M, Birgersson G, Bengtsson M, Reis Jr. R, Witzgall P et al. (2011) Attraction and oviposition of Tuta absoluta females in response to tomato leaf volatiles. J Chem Ecol 37:565–574. doi: 10.1007/s10886-011-9961-0
  51. Reddy GVP, Tabone E, Smith MT (2004) Mediation of host selection and oviposition behavior in the diamondback moth Plutella xylostella and its predator Chrysoperla carnea by chemical cues from cole crops. Biol Control 29:270–277. doi: 10.1016/S1049-9644(03)00162-2 CrossRefGoogle Scholar
  52. Roos J, Bejai S, Mozuraitis R, Dixelius C (2015) Susceptibility to Verticillium longisporum is linked to monoterpene production by TPS23/27 in Arabidopsis. Plant J 81(4), 572–585. http://doi.org/10.1111/tpj.12752
  53. Shorey HH, Hale RL (1965) Mass rearing of the larvae of nine noctuid species on a simple artificial medium. J Econ Entomol 58:55–68CrossRefGoogle Scholar
  54. Taylor JE, Riley DG (2008) Artificial infestations of beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), used to estimate an economic injury level in tomato. Crop Prot 27:268–274. doi: 10.1016/j.cropro.2007.05.014 CrossRefGoogle Scholar
  55. Ton J, D’Alessandro M, Jourdie V, Jakab G, Karlen D et al (2007) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49:16–26. doi: 10.1111/j.1365-313X.2006.02935.x CrossRefPubMedGoogle Scholar
  56. van Hulten M, Pelser M, van Loon LC, Pieterse CMJ, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. PNAS 103(14):5602–5607. doi: 10.1073/pnas.0510213103 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Vieira CR, Moraes MCB, Borges M, Sujii ER, Laumann RA (2013) cis-Jasmone indirect action on egg parasitoids (Hymenoptera: Scelionidae) and its application in biological control of soybean stink bugs (Hemiptera: Pentatomidae). Biol Control 64:75–82. doi: 10.1016/j.biocontrol.2012.10.004 CrossRefGoogle Scholar
  58. von Mérey GE, Veyrat N, D’Alessandro M, Turlings TCJ (2013) Herbivore-induced maize leaf volatiles affect attraction and feeding behavior of Spodoptera littoralis caterpillars. Front Plant Sci 4:1–9. doi: 10.3389/fpls.2013.00209 Google Scholar
  59. Xu YI, Chang PL, Liu D, Naraslnhan ML, Raghothama PM et al (1994) Plant defense genes are synergistically induced by Ethylene and Methyl Jasmonate. Plant cell 6:1077–1085CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zebelo S, Piorkowski J, Disi J, Fadamiro H (2014) Secretions from the ventral eversible gland of Spodoptera exigua caterpillars activate defense-related genes and induce emission of volatile organic compounds in tomato, Solanum lycopersicum. BMC Plant Biol 14:140. doi: 10.1186/1471-2229-14-140 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Joseph O. Disi
    • 1
  • Simon Zebelo
    • 1
    • 2
  • Esther Ngumbi
    • 1
  • Henry Y. Fadamiro
    • 1
  1. 1.Department of Entomology & Plant PathologyAuburn UniversityAuburnUSA
  2. 2.Department of Natural SciencesUniversity of Maryland Eastern ShorePrincess AnneUSA

Personalised recommendations