Arthropod-Plant Interactions

, Volume 11, Issue 1, pp 35–43 | Cite as

Is feeding on mosses by groundhoppers in the genus Tetrix (Insecta: Orthoptera) opportunistic or selective?

  • Kateřina Kuřavová
  • Šárka Grucmanová
  • Zuzana Filipcová
  • Vítězslav Plášek
  • Pavel Drozd
  • Petr Kočárek
Original Paper


Groundhoppers are considered to be detrito-bryophagous, and moss phyllodes represent a main food consumed by all studied species. We studied the food biology of two groundhoppers: the stenotopic habitat specialist Tetrix ceperoi (Bolivar, 1887) and the eurytopic T. tenuicornis (Sahlberg, 1893). These species occurred syntopically in an abandoned sand pit in the Czech Republic. The dietary preferences of the two species were very similar, with detritus being the dominant component, followed by mosses and other kinds of organic matter. The eurytopic T. tenuicornis consumed a greater diversity of mosses than the stenotopic T. ceperoi. The most frequently consumed mosses were the dominant species at the locality (Barbula spp., Bryum caespiticium, and Ceratodon purpureus), but some species-specific preferences were evident in the consumption of other moss species. To determine whether these groundhoppers mainly consumed mosses to obtain the water in their tissues, we compared the food composition at two sites that differed considerably in water availability. A selective consumption of mosses according to the water availability at the sites was evident. At the dry site, groundhoppers frequently consumed mosses that are simultaneously more tolerant to desiccation and nutritionally richer (species in the genera Barbula and Ceratodon) than the other mosses. Our results indicate that although groundhoppers generally consume those mosses that are most available, they do show some preference for mosses according to their nutritional quality and according to their ability to retain water under dry conditions.


Detritophagy Bryophagy Food selection Tetrix ceperoi Tetrix tenuicornis Tetrigidae 



The study was supported by Grant No. 206/07/0811 of the Czech Science Foundation (GACR) and by Project CZ.1.05/2.1.00/03.0100 (IET), which was financed by the Structural Funds of the European Union. The study was also supported by Project LO1208 of the National Feasibility Programme I of the Czech Republic. The authors thank Dr. Bruce Jaffee (USA) for linguistic and editorial improvements. We also thank two anonymous reviewers for helpful comments.


  1. Adamović ŽR (1969) Habitat relationships of some closely related species of Tetrigidae, Orthoptera. Ekologija 4:165–184Google Scholar
  2. Anderson LE (1954) Hoyer’s solution as a rapid permanent mounting medium for bryophytes. Bryologist 57:242–244CrossRefGoogle Scholar
  3. Asakawa Y (1981) Chemosystematics of bryophytes. The distribution of terpenoids and aromatic compounds in some European and Japanese Hepaticae. J Hattori Bot Lab 50:107–122Google Scholar
  4. Asakawa Y (1997) Heterocyclic compounds found in bryophytes. Heterocycles 46:795–848CrossRefGoogle Scholar
  5. Austin AD (1988) A new genus of baeine wasp (Hymenoptera: Scelionidae) from New Zealand associated with moss. N Z J Zool 15:173–183CrossRefGoogle Scholar
  6. BaDra 2.0 (2011) BaDra 2.0: Image Analysis Software. Cardware Licensing Program, Frenštát pod RadhoštěmGoogle Scholar
  7. Bahuguna YM, Gairola S, Semwal DP, Uniyal PL, Bhatt AB (2013) Bryophytes and ecosystem. In: Gupta RK, Kumar M (eds) Biodiversity of lower plants. IK International Publishing House Pvt. Ltd., New Delhi, pp 279–296Google Scholar
  8. Bates JW (1998) Is ‘life-form’ a useful concept in bryophyte ecology? Oikos 82:223–237CrossRefGoogle Scholar
  9. Becker H (1994) Secondary metabolites from bryophytes in vitro cultures. J Hattori Bot Lab 76:283–291Google Scholar
  10. Cullina W (2008) Native ferns, moss and grasses. Houghton Mifflin Harcourt, New YorkGoogle Scholar
  11. Dilks TJK, Proctor MCF (1978) Photosynthesis, respiration and water content in bryophytes. New Phytol 82:97–114CrossRefGoogle Scholar
  12. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49(1):71–92CrossRefPubMedGoogle Scholar
  13. Fabure J, Meyer C, Denayer F, Gaudry A, Gilbert D, Bernard N (2010) Accumulation capacities of particulate matter in an acrocarpous and a pleurocarpous moss exposed at three differently polluted sites (industrial, urban and rural). Water Air Soil Poll 212:205–217CrossRefGoogle Scholar
  14. Flook PK, Rowell CHF (1997) The phylogeny of the Caelifera (Insecta, Orthoptera) as deduced from mtrRNA gene sequences. Mol Phylogenet Evol 8:89–103CrossRefPubMedGoogle Scholar
  15. Forman RTT (1968) Caloric values of bryophytes. Bryologist 71:344–347CrossRefGoogle Scholar
  16. Forman RT (1969) Comparison of coverage, biomass, and energy as measures of standing crop of bryophytes in various ecosystems. Bull Torrey Bot Club 96:582–591CrossRefGoogle Scholar
  17. Gangwere SK (1960) Notes on drinking and the need of water in orthoptera. Can Entomol 92:911–915CrossRefGoogle Scholar
  18. Gangwere SK (1961) A monograph on food selection in Orthoptera. Trans Am Entomol Soc 87:67–230Google Scholar
  19. Gerson U (1969) Moss-arthropod associations. Bryologist 72:495–499CrossRefGoogle Scholar
  20. Gerson U (1982) Bryophytes and invertebrates. In: Smith AJE (ed) Bryophyte ecology. Chapman and Hall, London, pp 291–330CrossRefGoogle Scholar
  21. Glime JM (2013) Adaptive strategies: growth and life forms. In: Glime JM (ed) Bryophyte ecology, volume 1, ebook. Michigan Technological University and the International Association of Bryologists, MichiganGoogle Scholar
  22. Gröning J, Kochmann J, Hochkirch A (2005) Dornschrecken (Orthoptera, Tetrigidae) auf den Ostfriesischen Inseln-Verbreitung, Koexistenz und Okologie. Entomologie heute 17:47–63Google Scholar
  23. Gröning J, Krause S, Hochkirch A (2007) Habitat preferences of an endangered insect species, Cepero’s groundhopper (Tetrix ceperoi). Ecol Res 22:767–773CrossRefGoogle Scholar
  24. Hadley EB, Bliss LC (1964) Energy relationships of alpine plants of Mt. Washington, New Hampshire. Ecol Monogr 34:332–357CrossRefGoogle Scholar
  25. Haines WP, Renwick JAA (2009) Bryophytes as food: comparative consumption and utilization of mosses by a generalist insect herbivore. Entomol Exp Appl 133:296–306CrossRefGoogle Scholar
  26. Hancock JL (1902) The tettigidae of North America. Donnelley and Sons Company, ChicagoGoogle Scholar
  27. Hanson DT, Rice SK (2014) Photosynthesis in bryophytes and early land plants. Springer, New YorkCrossRefGoogle Scholar
  28. Hochkirch A, Gröning J (2012) Niche overlap in allotopic and syntopic populations of sexually interacting ground-hopper species. Insect Sci 19(3):391–402CrossRefGoogle Scholar
  29. Hochkirch A, Gröning J, Loos T, Metzing C, Reichelt M (2000) Specialized diet and feeding habits as key factors for the habitat requirements of the grasshopper species Tetrix subulata (Orthoptera: Tetrigidae). Entomol Gen 25:39–51CrossRefGoogle Scholar
  30. Hodgson CJ (1963) Some observations on the habits and life history of Tetrix undulata (Swrb.) (Orthoptera: Tetrigidae). Proc R Entomol Soc A 38:200–205Google Scholar
  31. Holuša J, Holuša O (2002) First record of Tetrix ceperoi ceperoi (Bolivar, 1887) in Moravia (Czech Republic). Entomol Probl 33:54Google Scholar
  32. Ingrisch S, Köhler G (1998) Die Heuschrecken Mitteleuropas. Westarp Wissenschaften, MagdeburgGoogle Scholar
  33. Kočárek P, Holuša J, Grucmanová Š, Musiolek D (2011) Biology of Tetrix bolivari (Orthoptera: Tetrigidae). Cent Eur J Biol 6:531–544Google Scholar
  34. Kuřavová K, Kočárek P (2015) Seasonal variation in the diet of Tetrix tenuicornis (Orthoptera: Tetrigidae). Entomol Sci 18:489–501CrossRefGoogle Scholar
  35. Kuřavová K, Kočárek P (2016) Mandibular morphology and dietary preferences in two pygmy mole crickets of the genus Xya (Orthoptera: Tridactylidae). Turk J Zool. doi: 10.3906/zoo-1510-19
  36. Kuřavová K, Hajduková L, Kočárek P (2014) Age-related mandible abrasion in the groundhopper Tetrix tenuicornis (Tetrigidae, Orthoptera). Arthropod Struc Dev 43:187–192CrossRefGoogle Scholar
  37. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeGoogle Scholar
  38. Lock K (1996) Ecologische studie over het activiteitenpatroon en de voeding van Tetrix subulata (L.). Saltabel 16:30–36Google Scholar
  39. Lovečková A (2013) Digestion of bryophyte tissues by groundhoppers of genus Tetrix. Thesis, University of Ostrava (In Czech with English abstract)Google Scholar
  40. Markham K, Chalk T, Stewart CN Jr (2007) Evaluation of fern and moss protein-based defenses against phytophagous insects. Int J Plant Sci 167:111–117CrossRefGoogle Scholar
  41. Martin MM (1983) Cellulose digestion in insects. Comp Biochem Physiol Part A: Physiol 75(3):313–324CrossRefGoogle Scholar
  42. Mead LJ, Khachatourians GG, Jones GA (1988) Microbial ecology of the gut in laboratory stocks of the migratory grasshopper, Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae). Appl Environ Microb 54:1174–1181Google Scholar
  43. Murray KJ, Harley PC, Beyers J, Walz H, Tenhunen JD (1989) Water content effects on photosynthetic response of Sphagnum mosses from the foothills of the Philip Smith Mountains, Alaska. Oecologia 79:244–250CrossRefGoogle Scholar
  44. Oliver MJ (1996) Desiccation tolerance in vegetative plant cells. Physiol Plant 97:779–787CrossRefGoogle Scholar
  45. Paranjape SY, Bhalerao AM (1985) Bioecological observations on a pigmy locust, Potua sabulosa Hancock (Tetrigidae: Orthoptera). Psyche 92:331–336CrossRefGoogle Scholar
  46. Proctor MC, Nagy Z, Csintalan Z, Takács Z (1998) Water-content components in bryophytes: analysis of pressure-volume relationships. J Exp Bot 49:1845–1854CrossRefGoogle Scholar
  47. Rastorfer JR (1976) Caloric values of three Alaskan-Arctic mosses. Bryologist 79:76–78CrossRefGoogle Scholar
  48. R Core Team (2003) R: a language and environment for statistical computing, Version 2.9.2. R Foundation for Statistical Computing, Vienna.
  49. Reynolds JD, Blackith RE, Blackith RM (1988) Dietary observations on some tetrigids (Orthoptera: Caelifera) from Sulawesi (Indonesia). J Trop Ecol 4:403–406CrossRefGoogle Scholar
  50. Robinson SA, Wasley J, Popp M, Lovelock CE (2000) Desiccation tolerance of three moss species from continental Antarctica. Funct Plant Biol 27:379–388CrossRefGoogle Scholar
  51. Romose V (1940) Okologische Untersuchungen uber Homalothecium sericeum, seine Wachstumsperioden und seine Stoffproduktion. Dansk botanisk Arkiv, MunksgaardGoogle Scholar
  52. Schofield WB (2001) Introduction to bryology. The Blackburn Press, CaldwellGoogle Scholar
  53. Schofield WB, Hébant C (1984) The morphology and anatomy of the moss gametophore. New Man Bryol 2:627–657Google Scholar
  54. Shaw J, Renzaglia KS (2004) Phylogeny and diversification of bryophytes. Am J Bot 91:1557–1581CrossRefPubMedGoogle Scholar
  55. Shiono T, Nakata M, Satoh T (2000) Superoxide dismutases in bryophytes and considerations of their evolution for adaptation to the land environment. Bryol Res 7:317–322Google Scholar
  56. Šinžar-Sekulić JB, Sabovljević MS, Stevanović BM (2005) Comparison of desiccation tolerance among mosses from different habitats. Arch Biol Sci 57:189–192CrossRefGoogle Scholar
  57. Taraba B (1996) Kalorimetrický seminář 1996, Sborník příspěvků. Ediční středisko OKD. OKK, OstravaGoogle Scholar
  58. Verdcourt B (1947) A note on the food of Acridium Geoff. (Orthopt.). Entomol Mon Mag 83:190Google Scholar
  59. Wheeler AG (2003) Bryophagy in the Auchenorrhyncha: seasonal history and habits of a moss specialist, Javesella opaca (Beamer) (Fulgoroidea: Delphacidae). Proc Entomol Soc Wash 105:599–610Google Scholar
  60. White TC (2005) Why does the world stay green? Nutrition and survival of plant-eaters. Csiro Publishing, CollingwoodGoogle Scholar
  61. Zinsmeister HD, Becker H, Eicher T (1991) Bryophytes, a source of biologically active, naturally occuring material? Angew Chem 30:130–147vCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Kateřina Kuřavová
    • 1
  • Šárka Grucmanová
    • 1
  • Zuzana Filipcová
    • 1
  • Vítězslav Plášek
    • 1
  • Pavel Drozd
    • 1
  • Petr Kočárek
    • 1
  1. 1.Department of Biology and Ecology and Institute of Environmental Technologies, Faculty of ScienceUniversity of OstravaOstravaCzech Republic

Personalised recommendations