Arthropod-Plant Interactions

, Volume 10, Issue 2, pp 89–100 | Cite as

Aphid herbivory as a potential driver of primary succession in coastal dunes

  • Charlotte Van Moorleghem
  • Eduardo de la PeñaEmail author
Original Paper


Herbivory is a major factor affecting both the performance and the fitness of the species composing a plant community and, ultimately, conditioning its temporal and spatial dynamics. Coastal dunes are a typical example of primary succession where different biotic and abiotic factors determine plant species occurrence; however, the effect of insect herbivory herein has remained little explored. To address this matter, we combined an observational study along a successional gradient with a green-house experiment to determine the occurrence and the impact of plant–aphid interactions. We focused on the species Schizaphis rufula, a widespread and abundant aphid associated with dune grasses in early stages of primary succession in Europe. Firstly, we studied aphid infestation rates on the dune grass Ammophila arenaria along a succession gradient in three locations of the North Sea coast to address the relationship between plant community composition and aphid occurrence; secondly, we tested the effect of aphid herbivory on a set of dune species typical for the different stages of succession. We found that the degree of aphid infestation was inversely correlated with the degree of dune fixation. The results of the experiment showed that aphid multiplication was significantly higher and its effect more pronounced on two early successional grass species, i.e. A. arenaria and Leymus arenarius. Here aphid multiplication resulted in a severe decrease in plant biomass; in late successional grass species, there was limited multiplication and no effect on biomass. The results of the field survey and the green-house experiment indicate that aphids show a clear preference for plants from early successional stages and, moreover, they have a greater impact on these plant species. All this supports the hypothesis of aphid herbivory as a driving factor of primary succession in coastal dunes.


Plant–insect interactions Schizaphis rufula Primary dune succession Plant competition Aboveground herbivory Host specificity 



Eduardo de la Peña thanks the support of the Ramón y Cajal programme (RYC-2012-10254, Spanish Ministry of Economy and Competitiveness. This study was also supported by the programme Europa Investigación 2015 (EUIN2015-62833). We thank the Nature Reserve Westhoek, and all the staff at the Terrestrial Ecology group of Ghent University and Eline Vermote for their help during the course of this study and two anonymous reviewers for their helpful comments on the manuscript. We thank Prof. Jan Pettersson for sending to us his original works on the genus Schizaphis.


  1. Allan E, Crawley MJ (2011) Contrasting effects of insect and molluscan herbivores on plant diversity in a long-term field experiment. Ecol Lett 14:1246–1253. doi: 10.1111/j.1461-0248.2011.01694.x CrossRefPubMedGoogle Scholar
  2. Bach CE (1994) Effects of a specialist herbivore (Altica Subplicata) on Salix cordata and sand dune succession. Ecol Monogr 64:423–445CrossRefGoogle Scholar
  3. Bach CE (2001) Long-term effects of insect herbivory and sand accretion on plant succession on sand dunes. Ecology 82:1401–1416CrossRefGoogle Scholar
  4. Bai Y, Wu J, Clark CM, Pan Q, Zhang L, Chen S, Wang Q, Han X (2012) Grazing alters ecosystem functioning and C:N: P stoichiometry of grasslands along a regional precipitation gradient. J Appl Ecol 49:1204–1215. doi: 10.1111/j.1365-2664.2012.02205.x CrossRefGoogle Scholar
  5. Bertels L, Deronde B, Kempeneers P, Provoost S, Tortelboom E (2005) Potentials of airborne hyperspectral remote sensing for vegetation mapping of spatial heterogeneous dynamic dunes—a case study along the Belgian coastline. In: Herrier J-L, Mees J, Salman A, Seys J, Van Nieuwenhuyse H, Dobbelaere I (eds) Proceedings ‘Dunes and Estuaries 2005’—international conference on nature restoration practices in European coastal habitats. Koksijde, Belgium, pp 153–163Google Scholar
  6. Bezemer TM, De Deyn GB, Bossinga TM, Van Dam NM, Harvey JA, van der Putten WH (2005) Soil community composition drives aboveground plant–herbivore–parasitoid interactions. Ecol Lett 8:652–661. doi: 10.1111/j.1461-0248.2005.00762.x CrossRefGoogle Scholar
  7. Bond TET (1952) Biological flora of the British Isles: Elymus arenarius L. J Ecol 40:217–227CrossRefGoogle Scholar
  8. Borer ET, Seabloom EW, Mitchell CE, Cronin JP (2014) Multiple nutrients and herbivores interact to govern diversity, productivity, composition, and infection in a successional grassland. Oikos 123:214–224. doi: 10.1111/j.1600-0706.2013.00680.x CrossRefGoogle Scholar
  9. Börner C, Heinse K (1957) Aphidina—Aphidoidea. In: Sorauer P (ed) Handbuch der Pflanzenkrankheiten, 5th edn. Paul Parey, Berlin, pp 1–402Google Scholar
  10. Brinkman EP, Duyts H, van der Putten WH (2005) Consequences of variation in species diversity in a community of root-feeding herbivores for nematode dynamics and host plant biomass. Oikos 110:417–427CrossRefGoogle Scholar
  11. Brinkman EP, Duyts H, Karssen G, van der Stoel CD, van der Putten WH (2015) Plant-feeding nematodes in coastal sand dunes: occurrence, host specificity and effects on plant growth. Plant Soil 397:17–30. doi: 10.1007/s11104-015-2447-z CrossRefGoogle Scholar
  12. Choeni H, Sebata A (2014) Interspecific variation in the resprouting responses of Acacia species following simulated herbivory in a semi-arid southern African savannah. Afr J Ecol 52:479–483. doi: 10.1111/aje.12149 CrossRefGoogle Scholar
  13. Clark LR (1964) The population dynamics of Cardiaspina albitextura (Psyllidae). Aust J Zool 12:362–380CrossRefGoogle Scholar
  14. Colwell RK (2009) Biodiversity: concepts, patterns, and measurement. In: Levin LA (ed) The Princeton guide to ecology. Princeton University Press, Princeton, pp 257–264. doi: 10.1111/j.1442-9993.2012.02436.x
  15. Connel J, Slatyer R (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144CrossRefGoogle Scholar
  16. Crevits H (2008) Natuurrichtplan voor de VEN-gebieden, speciale beschermingszone, groen-, park- en bosgebieden in de “Duinen van de Middenkust tussen Oostende en Blankenberge”, tekstbijlage. Belgisch Staatsblad, Brussels, pp 1–69Google Scholar
  17. de la Peña E, Rodríguez Echeverría S, Van Der Putten WH, Freitas H, Moens M (2006) Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytol 169(4):829–840CrossRefPubMedGoogle Scholar
  18. de la Peña E, Bonte D, Moens M (2009) Evidence of population differentiation in the dune grass Ammophila arenaria and its associated root-feeding nematodes. Plant Soil 324:307–316CrossRefGoogle Scholar
  19. de la Peña E, Vandomme V, Frago E (2014) Facultative endosymbionts of aphid populations from coastal dunes of the North Sea. Belg J Zool 144:41–50Google Scholar
  20. De Rooij-van der Goes PCEM (1995) The role of plant-parasitic nematodes and soil-borne fungi in the decline of Ammophila arenaria (L.) Link. New Phytol 129:661–669CrossRefGoogle Scholar
  21. Evidente A, Andolfi A, Cimmino A, Ganassi S, Altomare C, Favilla M, De Cristofaro A, Vitagliano S, Sabatini MA (2009) Bisorbicillinoids produced by the fungus Trichoderma citrinoviride affect feeding preference of the aphid Schizaphis graminum. J Chem Ecol 35:533–541. doi: 10.1007/s10886-009-9632-6 CrossRefPubMedGoogle Scholar
  22. Fornoni J (2011) Ecological and evolutionary implications of plant tolerance to herbivory. Func Ecol 25:399–407CrossRefGoogle Scholar
  23. Fraser LH, Grime JP (1999) Interacting effects of herbivory and fertility on a synthesized plant community. J Ecol 87:514–525CrossRefGoogle Scholar
  24. Haddad NM, Crutsinger GM, Gross K, Haarstad J, Knops JMH, Tilman D (2009) Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol Lett 12:1029–1039. doi: 10.1111/j.1461-0248.2009.01356.x CrossRefPubMedGoogle Scholar
  25. Hågvar EB, Hofsvang T (1991) Aphid parasitoids (Hymenoptera, Aphidiidae): biology, host selection and use in biological control. Biocontrol News Inf 12:13–41Google Scholar
  26. Herrier J-L, Mees J, Salman A, Seys J, Van Nieuwenhuyse H, Dobbelaere I (eds) (2005) Proceedings ‘Dunes and Estuaries 2005’: international conference on nature restoration practices in European coastal habitats, Koksijde, Belgium 19–23 September 2005. VLIZ Special Publication, 19. Vlaams Instituut voor de Zee (VLIZ), Oostende, pp XIV-685Google Scholar
  27. Hillebrand H, Gruner DS, Borer ET, Bracken MES, Cleland EE, Elser JJ, Harpole WS, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proc Natl Acad Sci USA 104:10904–10909. doi: 10.1073/pnas.0701918104 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Horgan FG, Stuart AM, Kudavidanage EP (2014) Impact of invasive apple snails on the functioning and services of natural and managed wetlands. Acta Oecol 54:90–100. doi: 10.1016/j.actao.2012.10.002 CrossRefGoogle Scholar
  29. Huiskes AHL (1979) Biological flora of the British Isles: Ammophila arenaria (L.) link (Psamma arenaria (L.) Roem. et Shult.; Calamagrostis arenaria (L.) Roth). J Ecol 67:363–382CrossRefGoogle Scholar
  30. Huston M, Smith T (1987) Plant succession: life history and competition. Am Nat 130:168–198CrossRefGoogle Scholar
  31. Ibanez S, Bison M, Lavorel S, Moretti M (2013) Herbivore species identity mediates interspecific competition between plants. Community Ecol 14:41–47. doi: 10.1556/ComEc.14.2013.1.5 CrossRefGoogle Scholar
  32. Imbert E, Houle G (2001) Spatio-temporal dynamics of root mass density in a coastal dune in subarctic Quebec, Canada. J Coast Res 17:877–884Google Scholar
  33. Jactel H, Brockerhoff EG (2007) Tree diversity reduces herbivory by forest insects. Ecol Lett 10:835–848. doi: 10.1111/j.1461-0248.2007.01073.x CrossRefPubMedGoogle Scholar
  34. Kaplan I, Sardanelli S, Rehill BJ, Denno RF (2011) Toward a mechanistic understanding of competition in vascular-feeding herbivores: an empirical test of the sink competition hypothesis. Oecologia 166:627–636. doi: 10.1007/s00442-010-1885-9 CrossRefPubMedGoogle Scholar
  35. Karlsen SR, Jepsen JU, Odland A, Ims RA, Elvebakk A (2013) Outbreaks by canopy-feeding geometrid moth cause state-dependent shifts in understorey plant communities. Oecologia 173:859–870. doi: 10.1007/s00442-013-2648-1 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kuijper DPJ, Jedrzejewska B, Brzeziecki B, Churski M, Jedrzejewski W, Zybura H (2010) Fluctuating ungulate density shapes tree recruitment in natural stands of the Białowieza Primeval Forest, Poland. J Veg Sci 21:1082–1098. doi: 10.1111/j.1654-1103.2010.01217.x CrossRefGoogle Scholar
  37. Lichter J (2000) Colonization constraints during primary succession on coastal Lake Michigan sand dunes. J Ecol 88:825–839CrossRefGoogle Scholar
  38. Long ZT, Mohler CL, Carson WP (2003) Extending the resource concentration hypothesis to plant communities: effects of litter and herbivores. Ecology 84:652–665CrossRefGoogle Scholar
  39. Maron JL, Crone E (2006) Herbivory: effects on plant abundance, distribution and population growth. Proc Biol Sci 273:2575–2584. doi: 10.1098/rspb.2006.3587 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Massad TJ (2013) Ontogenetic differences of herbivory on woody and herbaceous plants: a meta-analysis demonstrating unique effects of herbivory on the young and the old, the slow and the fast. Oecologia 172:1–10. doi: 10.1007/s00442-012-2470-1 CrossRefPubMedGoogle Scholar
  41. Maun MA (2009) Plant communities. In: Maun MA (ed) The biology of coastal sand dunes. Oxford University Press, New York, pp 164–180Google Scholar
  42. Moorleghem C (2014) Unraveling the ecology of the dune aphid Schizaphis rufula (Hemiptera: Aphidoidea): ecological preferences and parasitoids (Hymenoptera). MSc. Dissertation, Department of Biology, University of Ghent, Ghent, pp 42Google Scholar
  43. Nickel H, Remane R (2002) Artenliste der Zikaden Deutschlands, mit Angabe von Nährpflanzen, Nahrungsbreite, Lebenszyklus, Areal und Gefährdung (Hemiptera, Fulgoromorpha et Cicadomorpha). Beiträge zur Zikadenkunde 5:27–64Google Scholar
  44. Nieto Nafría JM (2007) Fauna Europaea: Hemiptera, Aphidoidea. Fauna Europaea version 1.3. Accessed 15 May 2014
  45. Pettersson J (1971a) Studies on four grass-inhabiting species of Schizaphis (Hem. Aphidoidea) with special reference to sex habits of S. arrhenatheri Pettersson. Dissertation, Swedish University of Agricultural SciencesGoogle Scholar
  46. Pettersson J (1971b) Studies on four grass-inhabiting species of Schizaphis (Hem. Aphidoidea): I. Literature review. Ent Scand 2:67–73CrossRefGoogle Scholar
  47. Pettersson J (1971c) Studies on four grass-inhabiting species of Schizaphis (Hom.: Aph.): III. (a) host plants. Swed J Agric Res 1:133–138Google Scholar
  48. Pimentel D (1961) Species diversity and insect population outbreaks. Ann Entomol Soc Am 54:422–437CrossRefGoogle Scholar
  49. Provoost S, Feys S, Van Gompel W, Vercruysse W (2011a) Evaluatie van het gevoerde beheer en opmaak van een beheerplan voor het VNR De Duinen en Bossen van De Panne. Deel I: Evaluatie van het gevoerde beheer in de deelgebieden Houtsaegerduinen en de Westhoek. Rapporten van het Instituut voor Natuur- en Bosonderzoek 53, Instituut voor Natuur- en Bosonderzoek, Brussel, pp 123Google Scholar
  50. Provoost S, Jones MLM, Edmondson SE (2011b) Changes in landscape and vegetation of coastal dunes in northwest Europe: a review. J Coast Conserv 15:207–226CrossRefGoogle Scholar
  51. Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica Oleracea). Ecol Monogr 43:95–124. doi: 10.2307/1942161 CrossRefGoogle Scholar
  52. SAS Institute Inc (2014) SAS/STAT® 9.4 user’s guide. SAS Institute Inc, Cary, pp 272Google Scholar
  53. Schmitz OJ (2008) Herbivory from individuals to ecosystems. Annu Rev Ecol Evol Syst 39:133–152. doi: 10.1146/annurev.ecolsys.39.110707.173418 CrossRefGoogle Scholar
  54. Stam JM, Kroes A, Li Y, Gols R, van Loon JJA, Poelman EH, Dicke M (2014) Plant interactions with multiple insect herbivores: from community to genes. Annu Rev Plant Biol 65:689–713. doi: 10.1146/annurev-arplant-050213-035937 CrossRefPubMedGoogle Scholar
  55. Starý P (1987) Subject bibliography of aphid parasitoids (Hymenoptera: Aphidiidae) of the world 1758–1982. Monogr Appl Entomol 25:101Google Scholar
  56. Stein C, Unsicker SS, Kahmen A, Wagner M, Audorff V, Auge H, Prati D, Weisser WW (2010) Impact of invertebrate herbivory in grasslands depends on plant species diversity. Ecology 91:1639–1650. doi: 10.1890/09-0600.1 CrossRefPubMedGoogle Scholar
  57. Strauss SY, Agrawal AA (1999) The ecology and evolution of plant tolerance to herbivory. Trends Ecol Evol 14:179–185. doi: 10.1016/S0169-5347(98)01576-6 CrossRefPubMedGoogle Scholar
  58. Tariq M, Wright DJ, Rossiter JT, Staley JT (2012) Aphids in a changing world: testing the plant stress, plant vigour and pulsed stress hypotheses. Agric For Entomol 14:177–185. doi: 10.1111/j.1461-9563.2011.00557.x CrossRefGoogle Scholar
  59. Turpeau E, Hullé M, Chaubet B (2013) Caractères généraux des cycles. Encyclop’Aphid. Accessed 22 April 2014
  60. Unsicker SB, Baer N, Kahmen A, Wagner M, Buchmann N, Weisser WW (2006) Invertebrate herbivory along a gradient of plant species diversity in extensively managed grasslands. Oecologia 150:233–246. doi: 10.1007/s00442-006-0511-3 CrossRefPubMedGoogle Scholar
  61. van der Putten WH, Troelstra SR (1990) Harmful soil organisms in coastal foredunes involved in degeneration of Ammophila arenaria and Calammophila baltica. Can J Bot Rev Can Bot 68:1560–1568CrossRefGoogle Scholar
  62. van der Putten WH, Breteler JTV, Van Dijk C (1989) Colonization of the root zone of Ammophila arenaria by harmful soil organisms. Plant Soil 120:213–223CrossRefGoogle Scholar
  63. Van der Stoel CD, van der Putten WH, Duyts H (2002) Development of a negative plant-soil feedback in the expansion zone of the clonal grass Ammophila arenaria following root formation and nematode colonization. J Ecol 90:978–988CrossRefGoogle Scholar
  64. Van der Stoel CD, Duyts H, van der Putten WH (2006) Population dynamics of a host-specific root-feeding cyst nematode and resource quantity in the root zone of a clonal grass. Oikos 112:651–659CrossRefGoogle Scholar
  65. van Veen FJF, Morris RJ, Godfray HCJ (2006) Apparent competition, quantitative food webs, and the structure of phytophagous insect communities. Annu Rev Entomol 51:187–208CrossRefPubMedGoogle Scholar
  66. Vandegehuchte ML, de la Peña E, Bonte D (2010a) Relative importance of biotic and abiotic soil components to plant growth and insect herbivore population dynamics. PLoS ONE 5:e12937. doi: 10.1371/journal.pone.0012937 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Vandegehuchte ML, de la Peña E, Bonte D (2010b) Aphids on Ammophila arenaria in Belgium: first reports, phenology and host range expansion. Belg J Zool 140:77–80Google Scholar
  68. Vandegehuchte ML, de la Peña E, Bonte D (2010c) Interactions between root and shoot herbivores of Ammophila arenaria in the laboratory do not translate into correlated abundances in the field. Oikos 119:1011–1019. doi: 10.1111/j.1600-0706.2009.18360.xVan CrossRefGoogle Scholar
  69. Weeda EJ, Westra R, Westra C, Westra T (2003) Nederlandse oecologische flora: wilde planten en hun relaties 5. KNNV Uitgeverij/IVN, Zeist, p 400Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Charlotte Van Moorleghem
    • 1
    • 2
  • Eduardo de la Peña
    • 1
    • 3
    Email author
  1. 1.Terrestrial Ecology Unit, Department of Biology, Faculty of SciencesUniversity of GhentGhentBelgium
  2. 2.Laboratory for Functional Morphology, Department of Biology, Faculty of SciencesUniversity of AntwerpWilrijkBelgium
  3. 3.Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-UMA-CSIC)Algarrobo-CostaSpain

Personalised recommendations