Arthropod-Plant Interactions

, Volume 9, Issue 5, pp 529–541 | Cite as

Disrupting Buchnera aphidicola, the endosymbiotic bacteria of Myzus persicae, delays host plant acceptance

  • Cristina R. Machado-Assefh
  • Guadalupe Lopez-Isasmendi
  • W. Fred  Tjallingii
  • Georg Jander
  • Adriana E. Alvarez
Original Paper


Myzus persicae Sulzer, like almost all aphids, associates with the endosymbiotic bacterium, Buchnera aphidicola. Although the accepted function of B. aphidicola is to complete the aphid diet with nutrients such as essential amino acids and vitamins, there is evidence that the bacteria may participate in the plant–insect interaction. Moreover, bacterial proteins with potential effector action on the metabolism of the host plant have been identified in the saliva of M. persicae. However, the possible involvement of B. aphidicola in relation to host plant acceptance by aphids needs further investigation. The aim of this study was to evaluate the effect that the disruption of the B. aphidicolaM. persicae symbiosis has on aphid feeding behaviour and on the expression of aphid salivary genes. The antibiotic rifampicin was administrated to adult aphids through artificial diets to disrupt the bacterial primary endosymbionts. Comparisons were made with control aphids, feeding from diet without rifampicin, as well as normal aphids fed on radish plants. Differences were found in the feeding behaviour of aposymbiotic aphids, which had delayed host acceptance and problems during stylet penetration into host plants. It was also found that B. aphidicola disruption down-regulated the expression of the Mp63 salivary protein gene. Together, these results indicate that B. aphidicola plays a role in plant–aphid interactions. The validity of the use of artificial diets in plant–aphid studies is also discussed.


EPG technique Aphid primary endosymbiont Green peach aphid Artificial diets Aphid salivary genes 


  1. Alvarez AE, Broglia VG, Alberti D´Amato AM, Wouters D, Van der Vossen E, Garzo E, Tjallingii WF, Dicke M, Vosman B (2013) Comparative analysis of Solanum stoloniferum responses to probing by the green peach aphid, Myzus persicae and the potato aphid Macrosiphum euphorbiae. Insect Sci 20(2):207–227CrossRefPubMedGoogle Scholar
  2. Bonaventure G (2012) Perception of insect feeding by plants. Plant Biol 14(6):872–880. doi:10.1111/j.1438-8677.2012.00650.x CrossRefPubMedGoogle Scholar
  3. Bos JIB, Prince D, Pitino M, Maffei ME, Win J, Hogenhout SA (2010) A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genet 6(11):e1001216CrossRefPubMedCentralPubMedGoogle Scholar
  4. Buchner P (1965) Endosymbioses of animals with plant microorganisms. Wiley, ChichesterGoogle Scholar
  5. Carolan JC, Fitzroy CIJ, Ashton PD, Douglas AE, Wilkinson TL (2009) The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. Proteomics 9:2457–2467CrossRefPubMedGoogle Scholar
  6. Chaudhary R, Atamian HS, Shen Z, Briggs SP, Kaloshian, I (2014) GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense. Proc Natl Acad Sci 111(24):8919–8924. doi:10.1073/pnas.1407687111
  7. Cherqui AA, Tjallingii WF (2000) Salivary proteins of aphids, a pilot study on identification, separation and immune localization. J Insect Physiol 46(8):1177–1186CrossRefPubMedGoogle Scholar
  8. Cooper WR, Dillwith JW, Puterka GJ (2010) Salivary proteins of Russian wheat aphid (Hemiptera: Aphididae). Environ Entomol 39:223–231CrossRefPubMedGoogle Scholar
  9. Cooper WR, Dillwith JW, Puterka GJ (2011) Comparisons of salivary proteins from five aphid (Hemiptera: Aphididae) species. Environ Entomol 40(1):151–156CrossRefPubMedGoogle Scholar
  10. De Vos M, Jander G (2009) Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant, Cell Environ 32:1548–1560CrossRefGoogle Scholar
  11. Di-Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2011) InfoStat versión 2011. Grupo InfoStat. FCA. Cordoba, Argentina,
  12. Douglas AE (1993) The nutritional quality of phloem sap utilized by natural aphid populations. Ecol Entomol 18(1):31–38CrossRefGoogle Scholar
  13. Douglas AE (1996) Reproductive failure and the free amino acid pools in pea aphid (Acyrthosiphon pisum) lacking symbiotic bacteria. J Insect Physiol 42(3):247–255CrossRefGoogle Scholar
  14. Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37CrossRefPubMedGoogle Scholar
  15. Douglas AE, Minto LB, Wilkinson TL (2001) Quantifying nutrient productions by the microbial symbionts in an aphid. J Exp Biol 204:349–358PubMedGoogle Scholar
  16. Elzinga DA, Jander G (2013) The role of protein effectors in plant-aphid interactions. Curr Opin Plant Biol 16(4):451–456. doi:10.1016/j.pbi.2013.06.018 CrossRefPubMedGoogle Scholar
  17. Elzinga DA, De Vos M, Jander G (2014) Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein. Mol Plant Microbe Interact 27(7):747–756. doi:10.1094/MPMI-01-14-0018-R CrossRefPubMedCentralPubMedGoogle Scholar
  18. Frago E, Dicke M, Godfray HCJ (2012) Insect symbionts as hidden players in insect-plant interactions. Trends Ecol Evol 27(12):705–711. doi:10.1016/j.tree.2012.08.013 CrossRefPubMedGoogle Scholar
  19. Francis F, Gerkens P, Harmel N, Mazzucchelli G, De Pauw E, Haubruge E (2006) Proteomics in Myzus persicae: effect of aphid host plant switch. Insect Biochem Mol Biol 36(3):219–227CrossRefPubMedGoogle Scholar
  20. Francis F, Guillonneau F, Leprince P, De Pauw E, Haubruge E, Jia L, Goggin FL (2010) Tritrophic interactions among Macrosiphum euphorbiae aphids, their host plants and endosymbionts: investigation by a proteomic approach. J Insect Physiol 56(6):575–585CrossRefPubMedGoogle Scholar
  21. Halarewicz A, Gabrys B (2012) Probing behavior of bird cherry-oat aphid Rhopalosiphum padi (L.) on native bird cherry Prunus padus L. and alien invasive black cherry Prunus serotina Erhr. in Europe and the role of cyanogenic glycosides. Arthropod-Plant Interact 6(4):497–505. doi:10.1007/s11829-012-9228-x CrossRefGoogle Scholar
  22. Harmel N, Letocart E, Cherqui A, Giordanengo P, Mazzucchelli G, Guillonneau F, De Pauw E, Haubruge E, Francis F (2008) Identification of aphid salivary proteins: a proteomic investigation of Myzus persicae. Insect Mol Biol 17(2):165–174CrossRefPubMedGoogle Scholar
  23. Kimmins FM, Tjallingii WF (1985) Ultrastructure of sieve element penetration by aphid stylets during electrical recording. Entomol Exp Appl 39:135–143CrossRefGoogle Scholar
  24. Koga R, Tsuchida T, Fukatsu T (2003) Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid 270. doi:10.1098/rspb.2003.2537
  25. Koga R, Tsuchida T, Sakurai M, Fukatsu T (2007) Selective elimination of aphid endosymbionts: effects of antibiotic dose and host genotype, and fitness consequences. FEMS Microbiol Ecol 60(2):229–239. doi:10.1111/j.1574-6941.2007.00284.x CrossRefPubMedGoogle Scholar
  26. Legeai F, Shigenobu S, Gauthier JP, Colbourne J, Rispe C, Collin O, Richards S, Wilson ACC, Murphy T, Tagu D (2010) AphidBase: a centralized bioinformatic resource for annotation of the pea aphid genome. Insect Mol Biol 19:5–12CrossRefPubMedCentralPubMedGoogle Scholar
  27. McLean DL, Kinsey MG (1964) A technique for electronically recording aphid feeding and salivation. Nature 202:1358–1359CrossRefGoogle Scholar
  28. Miles PW (1999) Aphid saliva. Biol Rev Camb Philos Soc 74(1):41–85CrossRefGoogle Scholar
  29. Moran NA, Degnan PH (2006) Functional genomics of Buchnera and the ecology of aphid hosts. Mol Ecol 15(5):1251–1261. doi:10.1111/j.1365-294X.2005.02744.x CrossRefPubMedGoogle Scholar
  30. Moran NA, Munson MA, Baumann P, Ishikawa H (1993) A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc Lond B 253:167–171Google Scholar
  31. Munson MA, Baumann P, Kinsey MG (1991) Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon consisting of the mycetocyte-associated primary endosymbionts of aphids. Int J Syst Bacteriol 41:566–568CrossRefGoogle Scholar
  32. Mutti NS, Louis J, Pappan LK, Pappan K, Begum K, Chen M-S, Park Y, Dittmer N, Marshall J, Reese JC, Reeck GR (2008) A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proc Natl Acad Sci 105(29):9965–9969Google Scholar
  33. Nicholson SJ, Hartson SD, Puterka GJ (2012) Proteomic analysis of secreted saliva from Russian wheat aphid (Diuraphis noxia Kurd.) biotypes that differ in virulence to wheat. J Proteom 75(7):2252–2268CrossRefGoogle Scholar
  34. Nikoh N, McCutcheon JP, Kudo T, Miyagishima S, Moran N, Nakabachi A (2010) Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host. PLoS Genet 6(2):e1000827. doi:10.1371/journal.pgen.1000827 CrossRefPubMedCentralPubMedGoogle Scholar
  35. Nováková E, Hypša V, Klein J, Foottit RG, von Dohlen CD, Moran NA (2013) Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola. Mol Phylogenet Evol 68(1):42–54CrossRefPubMedGoogle Scholar
  36. Pitino M, Hogenhout SA (2013) Aphid protein effectors promote aphid colonization in a plant species-specific manner. Mol Plant-Microbe Interact 26(1):130–139. doi:10.1094/mpmi-07-12-0172-fi CrossRefPubMedGoogle Scholar
  37. Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS ONE 6(10):e25709CrossRefPubMedCentralPubMedGoogle Scholar
  38. Prado E, Tjallingii WF (1994) Aphid activities during sieve element punctures. Entomol Exp Appl 72:157–165CrossRefGoogle Scholar
  39. Prosser WA, Douglas AE (1991) The aposymbiotic aphid: an analysis of chlortetracycline-treated pea aphid, Acyrthosiphon pisum. J Insect Physiol 37(10):713–719CrossRefGoogle Scholar
  40. Prosser WA, Douglas AE (1992) A test of the hypothesis that nitrogen is upgraded and recycled in an aphid (Acyrtosiphon pisum) symbiosis. J Insect Physiol 38(2):93–99CrossRefGoogle Scholar
  41. Ramsey J, Wilson A, de Vos M, Sun Q, Tamborindeguy C, Winfield A, Malloch G, Smith D, Fenton B, Gray S, Jander G (2007) Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design. BMC Genom 8:423CrossRefGoogle Scholar
  42. Rao SAK, Carolan JC, Wilkinson TL (2013) Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PLoS ONE 8(2):e57413CrossRefPubMedCentralPubMedGoogle Scholar
  43. Sarria E, Cid M, Garzo E, Fereres A (2009) Excel Workbook for automatic parameter calculation of EPG data. Comput Electron Agric 67(1–2):35–42CrossRefGoogle Scholar
  44. Sauvion N, Charles H, Febvay G, Rahbé Y (2004) Effects of jackbean lectin (ConA) on the feeding behaviour and kinetics of intoxication of the pea aphid Acyrthosiphon pisum. Entomol Exp Appl 110(1):31–44. doi:10.1111/j.0013-8703.2004.00117.x CrossRefGoogle Scholar
  45. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407(6800):81–86CrossRefPubMedGoogle Scholar
  46. Shigenobu S, Watanabe H, Sakaki Y, Ishikawa H (2001) Accumulation of species-specific amino acid replacements that cause loss of particular protein functions in Buchnera, an endocellular bacterial symbiont. J Mol Evol 53:377–386CrossRefPubMedGoogle Scholar
  47. The International Aphid Genomics C (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8(2):e1000313CrossRefGoogle Scholar
  48. Thompson GA, Goggin FL (2006) Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J Exp Bot 57(4):755–766CrossRefPubMedGoogle Scholar
  49. Tjallingii WF (1978a) Stylet penetration activities by aphids: new correlations with electrical penetration graphs. In: Labeyrie V, Fabres G, Lachaise D (eds) Proceedings of the 6th international symposium on insect–plant relationships, Pau, France, 1987. W. Junk Publishers, pp 301–306Google Scholar
  50. Tjallingii WF (1978b) Electronic recording of penetration behaviour by aphids. Entomol Exp Appl 24:721–730CrossRefGoogle Scholar
  51. Tjallingii WF (1985) Electrical nature of recorded signals during stylet penetration by aphids. Entomolo Exp Appl 38:177–186CrossRefGoogle Scholar
  52. Tjallingii WF (1988) Electrical recording of stylet penetration activities. In: Minks AK, Harrewijn P (eds) Aphids, their biology, natural enemies and control. Elsevier, Amsterdam, pp 95–108Google Scholar
  53. Tjallingii WF (1990a) Continuous recording of stylet penetration activities by aphids. In: Campbell RK, Eikenbary RD (eds) Aphid-plant genotype interactions. Elsevier, Amsterdam, pp 89–99Google Scholar
  54. Tjallingii WF (1990b) Stylet penetration parameters from aphids in relation to host-plant resistance. In: Insects-plants 89, vol 39. Akadémiai Kiado, Budapest, pp 411–419Google Scholar
  55. Tjallingii WF (2006) Salivary secretions by aphids interacting with proteins of phloem wound responses. J Exp Bot 57:739–745CrossRefPubMedGoogle Scholar
  56. Tjallingii WF, Cherqui A (1999) Aphid saliva and aphid-plant interactions. Exp Appl Entomol 10:169–174Google Scholar
  57. Tjallingii WF, Hogen Esch T (1993) Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiol Entomol 18:189–200CrossRefGoogle Scholar
  58. Tsuchida T, Koga R, Shibao H, Matsumoto T, Fukatsu T (2002) Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid Acyrthosiphon pisum. Mol Ecol 11(10):2123–2135CrossRefPubMedGoogle Scholar
  59. Tsuchida T, Koga R, Horikawa M, Tsunoda T, Maoka T, Matsumoto S, Simon J-C, Fukatsu T (2010) Symbiotic bacterium modifies aphid body color. Science 330(6007):1102–1104. doi:10.1126/science.1195463 CrossRefPubMedGoogle Scholar
  60. Vandermoten S, Harmel N, Mazzucchelli G, De Pauw E, Haubruge E, Francis F (2014) Comparative analyses of salivary proteins from three aphid species. Insect Mol Biol 23:67–77CrossRefPubMedGoogle Scholar
  61. Viñuelas J, Febvay G, Duport G, Colella S, Fayard J-M, Charles H, Rahbé Y, Calevro F (2011) Multimodal dynamic response of the Buchnera aphidicola pLeu plasmid to variations in leucine demand of its host, the pea aphid Acyrthosiphon pisum. Mol Microbiol 81(5):1271–1285. doi:10.1111/j.1365-2958.2011.07760.x CrossRefPubMedCentralPubMedGoogle Scholar
  62. Von Burg S, Ferrari J, Müller CB, Vorburger C (2008) Genetic variation and covariation of susceptibility to parasitoids in the aphid Myzus persicae: no evidence for trade-offs. Proc R Soc B 275:1089–94Google Scholar
  63. Vorburger C, Gehrer L, Rodriguez P (2010) A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biol Lett 6:109–111CrossRefPubMedCentralPubMedGoogle Scholar
  64. Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216PubMedGoogle Scholar
  65. Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146:859–866CrossRefPubMedCentralPubMedGoogle Scholar
  66. Wang Y, Carolan JC, Hao FH, Nicholson JK, Wilkinson TL, Douglas AE (2010) Integrated metabonomic-proteomic analysis of an insect-bacterial symbiotic system. J Proteome Res 9(3):1257–1267. doi:10.1021/pr9007392 CrossRefPubMedGoogle Scholar
  67. Whitehead LF, Douglas AE (1993) A metabolic study of Buchnera, the intracellular bacterial symbionts of the pea aphid Acyrthosiphon pisum. J Gen Microbiol 139(4):821–826CrossRefGoogle Scholar
  68. Wilkinson TL (1998) The elimination of intracellular microorganisms from insects: an analysis of antibiotic-treatment in the pea aphid (Acyrthosiphon pisum). Comp Biochem Physiol Part A 119:871–881CrossRefGoogle Scholar
  69. Wilkinson TL, Douglas AE (1995) Aphid feeding, as influenced by disruption of the symbiotic bacteria: an analysis of the pea aphid (Acyrthosiphon pisum). J Insect Physiol 41(8):635–640CrossRefGoogle Scholar
  70. Will T, van Bel AJE (2006) Physical and chemical interactions between aphids and plants. J Exp Bot 57(4):729–737CrossRefPubMedGoogle Scholar
  71. Will T, Tjallingii W, Thonnessen A, Bel A (2007) Molecular sabotage of plant defense by aphid saliva. Proc Natl Acad Sci U. S. A 104:10536–10541Google Scholar
  72. Will T, Steckbauer K, Hardt M, van Bel AJE (2012) Aphid gel saliva: sheath structure, protein composition and secretory dependence on stylet-tip milieu. PLoS ONE 7(10):e46903CrossRefPubMedCentralPubMedGoogle Scholar
  73. Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143:866–875CrossRefPubMedCentralPubMedGoogle Scholar
  74. Zhu-Salzman K, Salzman RA, Ahn JE, Koiwa H (2004) Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol 134:420–431CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Cristina R. Machado-Assefh
    • 1
    • 2
  • Guadalupe Lopez-Isasmendi
    • 1
    • 2
  • W. Fred  Tjallingii
    • 3
  • Georg Jander
    • 4
  • Adriana E. Alvarez
    • 1
  1. 1.Facultad de Ciencias NaturalesUniversidad Nacional de Salta (UNSa)SaltaArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)CCT-SaltaSaltaArgentina
  3. 3.EPG SystemsWageningenThe Netherlands
  4. 4.Boyce Thompson Institute for Plant ResearchIthacaUSA

Personalised recommendations