Arthropod-Plant Interactions

, Volume 9, Issue 3, pp 241–252 | Cite as

Specialization of pollination systems of two co-flowering phenotypically generalized Hypericum species (Hypericaceae) in Cameroon

  • Michael Bartoš
  • Robert Tropek
  • Lukáš Spitzer
  • Eliška Padyšáková
  • Petr Janšta
  • Jakub Straka
  • Michal Tkoč
  • Štěpán Janeček
Original Paper


The degree of specialization in plant–pollinator relationships is probably the most intensively discussed topic of pollination biology. Phenotypically generalized flowers are typically also considered to be generalized ecologically and/or functionally. Our study focuses on visitors to flowers of Hypericum roeperianum and H. revolutum, two closely related co-flowering Afromontane plants with flat flowers, which can be visited by many insects. We collected insect visitors and recorded their behaviour. Both Hypericum species were visited by large numbers of morphospecies and functional groups, which might indicate that they are highly generalized plants. Nevertheless, after including the visitors’ abundance, behaviour and contact with the plants’ reproductive organs, only a single carpenter bee species could be considered an effective pollinator of H. roeperianum, and a few smaller bee species (mainly Apis mellifera and Meliplebeia ogouensis) could be considered as effective pollinators of H. revolutum. Despite the fact that the flowers appear at first glance phenotypically generalized, both species seem to be ecologically and functionally specialized for bee pollination. Our results indicate that even phenotypically generalized flowers can be functionally and ecologically specialized. More precise knowledge of their visitors’ behaviour is crucial for understanding their pollination systems. Our results cast doubts upon the currently leading opinion that generalization prevails in pollination systems, as such conclusions are based mainly on community-wide studies, which usually do not consider the true role of insect visitors.


Specialization Generalization Insect behaviour Pollinators Plant–animal interactions Flower visitors 



We would like to thank the Kedjom-Keku community and particularly Ernest Vunan Amohlon from the SATEC NGO for their kind reception in the Big Babanki village and F. Rooks for English proofreading. The research was supported by the University of South Bohemia (136/2010/P, 168/2013/P), the Ministry of Culture of the Czech Republic (DKRVO 2013/12, National Museum, 00023272), the Czech Science Foundation (14-36098G) and the Institutional Research Support Grant No. SVV 260 087/2014.

Supplementary material

11829_2015_9378_MOESM1_ESM.pdf (15 kb)
Online Resource 1 Checklist of insect visitors on Hypericum sp. (PDF 15 kb)
11829_2015_9378_MOESM2_ESM.pdf (116 kb)
Online Resource 2 Rarefaction curves and extrapolation of rarefaction (PDF 115 kb)


  1. Aizen MA, Morales CL, Morales JM (2008) Invasive mutualists erode native pollination webs. PLoS Biol 6:e31CrossRefPubMedCentralPubMedGoogle Scholar
  2. Anderson DR (2008) Model based inference in the life sciences: a primer on evidence. Springer, New YorkCrossRefGoogle Scholar
  3. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER: guide to software and statistical methods. PRIMER-E, PlymouthGoogle Scholar
  4. Armbruster WS, Baldwin BG (1998) Switch from specialized to generalized pollination. Nature 394:632CrossRefGoogle Scholar
  5. Bartoš M, Janeček Š (2014) Pollinator-induced twisting of flowers sidesteps floral architecture constraints. Curr Biol 24:R793–R795CrossRefPubMedGoogle Scholar
  6. Bartoš M, Janeček Š, Padyšáková E, Patáčová E, Altman J, Pešata M, Kantorová J, Tropek R (2012) Nectar properties of the sunbird-pollinated plant Impatiens sakeriana: a comparison with six other co-flowering species. S Afr J Bot 78:63–74CrossRefGoogle Scholar
  7. Briscoe A, Chittka L (2001) Evolution of color vision in insects. Annu Rev Entomol 46:471–510CrossRefPubMedGoogle Scholar
  8. Castro S, Loureiro J, Ferrero V, Silveira P, Navarro L (2013) So many visitors and so few pollinators: variation in insect frequency and effectiveness governs the reproductive success of an endemic milkwort. Plant Ecol 214:1233–1245CrossRefGoogle Scholar
  9. Cheek M, Onana JM, Pollard BJ (2000) The plants of Mount Oku and the Ijlm Ridge, Cameroon, a conservation checklist. Royal Botanic Gardens, KewGoogle Scholar
  10. Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86:361–377CrossRefGoogle Scholar
  11. Clivati D, Cordeiro GD, Płachno BJ, Miranda VFO (2014) Reproductive biology and pollination of Utricularia reniformis A. St.-Hil. (Lentibulariaceae). Plant Biol 16:677–682CrossRefPubMedGoogle Scholar
  12. Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User’s guide and application.
  13. Dafni A, Eisikowitch D, Ivri Y (1987) Nectar flow and pollinators’ efficiency in two co-occurring species of Capparis (Capparaceae) in Israel. Plant Syst Evol 157:181–186CrossRefGoogle Scholar
  14. Dafni A, Bernhardt P, Shmida A, Ivri BY, Greenbaum S, O’Toole C, Losito L (1990) Red bowl-shaped flowers: convergence for beetle pollination in the Mediterranean region. Isr J Bot 39:81–92Google Scholar
  15. Dafni A, Kevan PG, Husband BC (2005) Practical pollination ecology. Enviroquest, CambridgeGoogle Scholar
  16. Dicks LV, Corbet SA, Pywell RF (2002) Compartmentalization in plant–insect flower visitor webs. J Anim Ecol 71:32–43CrossRefGoogle Scholar
  17. Dupont YL, Hansen DM, Olesen JM (2003) Structure of a plant–flower-visitor network in the high-altitude sub-alpine desert of Tenerife, Canary Islands. Ecography 26:301–310CrossRefGoogle Scholar
  18. Dupont YL, Padrón B, Olesen JM, Petanidou T (2009) Spatio-temporal variation in the structure of pollination networks. Oikos 118:1261–1269CrossRefGoogle Scholar
  19. Eisner T, Eisner M, Aneshansley D (1973) Ultraviolet patterns on rear of flowers: basis of disparity of buds and blossoms. Proc Natl Acad Sci USA 70:1002–1004CrossRefPubMedCentralPubMedGoogle Scholar
  20. Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403CrossRefGoogle Scholar
  21. Forup ML, Memmott J (2005) The restoration of plant–pollinator interactions in hay meadows. Restor Ecol 13:265–274CrossRefGoogle Scholar
  22. Friis EM, Crane PR, Pedersen KR (2011) Early flowers and angiosperm evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  23. Goldblatt P, Bernhardt P, Manning JC (1998) Pollination of petaloid geophytes by monkey beetles (Scarabaeidae: Rutelinae: Hopliini) in southern Africa. Ann Mo Bot Gard 85:215–230CrossRefGoogle Scholar
  24. Gottsberger G (1989) Beetle pollination and flowering rhythm of Annona spp. (Annonaceae) in Brazil. Plant Syst Evol 167:165–187CrossRefGoogle Scholar
  25. Gottsberger G (1999) Pollination and evolution in neotropical Annonaceae. Plant Species Biol 14:143–152CrossRefGoogle Scholar
  26. Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596CrossRefPubMedGoogle Scholar
  27. Gronquist M, Bezzerides A, Attygalle A, Meinwald J, Eisner M, Eisner T (2001) Attractive and defensive functions of the ultraviolet pigments of a flower (Hypericum calycinum). Proc Natl Acad Sci USA 98:13745–13750Google Scholar
  28. Herrera CM (1988) Variation in mutualisms: the spatiotemporal mosaic of a pollinator assemblage. Biol J Linn Soc 35:95–125CrossRefGoogle Scholar
  29. Inouye DW (1980) The terminology of floral lacerny. Ecology 61:1251–1253CrossRefGoogle Scholar
  30. Inouye DW, Gill DE, Dudash MR, Fenster CB (1994) A model and lexicon for pollen fate. Am J Bot 81:1517–1530CrossRefGoogle Scholar
  31. Janeček Š, Hrázský Z, Bartoš M, Brom J, Reif J, Hořák D, Bystřická D, Riegert J, Sedláček O, Pešata M (2007) Importance of big pollinators for the reproduction of two Hypericum species in Cameroon, West Africa. Afr J Ecol 45:607–613CrossRefGoogle Scholar
  32. Janeček Š, Patáčová E, Bartoš M, Padyšáková E, Spitzer L, Tropek R (2011) Hovering sunbirds in the Old World: occasional behaviour or evolutionary trend? Oikos 120:178–183CrossRefGoogle Scholar
  33. Janeček Š, Riegert J, Sedláček O, Bartoš M, Hořák D, Reif J, Padyšáková E, Fainová D, Antczak M, Pešata M, Mikeš V, Patáčová E, Altman J, Kantorová J, Hrázský Z, Brom J, Doležal J (2012) Food selection by avian floral visitors: an important aspect of plant–flower visitor interactions in West Africa. Biol J Linn Soc 107:355–367CrossRefGoogle Scholar
  34. Johnson SD, Dafni A (1998) Response of bee-flies to the shape and pattern of model flowers: implications for floral evolution in a Mediterranean herb. Funct Ecol 12:289–297CrossRefGoogle Scholar
  35. Johnson SD, Steiner KE (2000) Generalization versus specialization in plant pollination systems. Trends Ecol Evol 15:140–143CrossRefPubMedGoogle Scholar
  36. Jürgens A, Webber AC, Gottsberger G (2000) Floral scent compounds of Amazonian Annonaceae species pollinated by small beetles and thrips. Phytochemistry 55:551–558CrossRefPubMedGoogle Scholar
  37. King C, Ballantyne G, Willmer PG (2013) Why flower visitation is a poor proxy for pollination: measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol Evol 4:811–818CrossRefGoogle Scholar
  38. Lindsey AH (1984) Reproductive biology of Apiacea. I. Floral vistors to Thaspium and Zizia and their importance in pollination. Am J Bot 71:375–387CrossRefGoogle Scholar
  39. McIntosh ME (2005) Pollination of two species of Ferocactus: interactions between cactus-specialist bees and their host plants. Funct Ecol 19:727–734CrossRefGoogle Scholar
  40. Meseguer AS, Aldasoro JJ, Sanmartín I (2013) Bayesian inference of phylogeny, morphology and range evolution reveals a complex evolutionary history in St John’s wort (Hypericum). Mol Phylogenet Evol 67:379–403CrossRefPubMedGoogle Scholar
  41. Neuschulz EL, Grass I, Botzat A, Johnson SD, Farwig N (2013) Persistence of flower visitors and pollination services of a generalist tree in modified forests. Austral Ecol 38:374–382CrossRefGoogle Scholar
  42. Newman E, Manning J, Anderson B (2014) Matching floral and pollinator traits through guild convergence and pollinator ecotype formation. Ann Bot 113:373–384CrossRefPubMedCentralPubMedGoogle Scholar
  43. Olesen JM, Jordano P (2002) Geographic patterns in plant–pollinator mutualistic networks. Ecology 83:2416–2424Google Scholar
  44. Oliveira PEAM, Sazima M (1990) Pollination biology of two species of Kielmeyera (Guttiferae) from Brazilian cerrado vegetation. Plant Syst Evol 172:35–49CrossRefGoogle Scholar
  45. Oliveira PE, Gibbs PE, Barbosa AA, Talavera S (1992) Contrasting breeding systems in two Eriotheca (Bombacaceae) species of the Brazilian cerrados. Plant Syst Evol 179:207–219CrossRefGoogle Scholar
  46. Ollerton J, Johnson SD, Cranmer L, Kellie S (2003) The pollination ecology of an assemblage of grassland asclepiads in South Africa. Ann Bot 92:807–834CrossRefPubMedCentralPubMedGoogle Scholar
  47. Ollerton J, Killick A, Lamborn E, Watts S, Whiston M (2007) Multiple meanings and modes: on the many ways to be a generalist flower. Taxon 56:717–728CrossRefGoogle Scholar
  48. Padyšáková E, Bartoš M, Tropek R, Janeček Š (2013) Generalization versus specialization in pollination systems: visitors, thieves, and pollinators of Hypoestes aristata (Acanthaceae). PLoS One 8:e59299CrossRefPubMedCentralPubMedGoogle Scholar
  49. Pasquet RS, Peltier A, Hufford MB, Oudin E, Saulnier J, Paul L, Knudsen JT, Herren HR, Gepts P (2008) Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proc Natl Acad Sci USA 105:13456–13461CrossRefPubMedCentralPubMedGoogle Scholar
  50. Price MV, Waser NM, Irwin RE, Campbell DR, Brody AK (2005) Temporal and spatial variation in pollination of a montane herb: a seven-year study. Ecology 86:2106–2116CrossRefGoogle Scholar
  51. Proenca CEM (1992) Buzz pollination—older and more widespread than we think? J Trop Ecol 8:115–120CrossRefGoogle Scholar
  52. Raju AJS, Rao SP (2006) Nesting habits, floral resources and foraging ecology of large carpenter bees (Xylocopa latipes and Xylocopa pubescens) in India. Curr Sci 90:1210–1217Google Scholar
  53. Robson NKB (1961) Guttiferae. In: Exell AW, Wild H (eds) Flora Zambesiaca. Kew Publishing and Flora Zambesiaca Managing Committee, LondonGoogle Scholar
  54. Sabatino M, Maceira N, Aizen MA (2010) Direct effects of habitat area on interaction diversity in pollination webs. Ecol Appl 20:1491–1497CrossRefPubMedGoogle Scholar
  55. StatSoft I (2011) STATISTICA, ver. 10.
  56. Wang Q, Li Y, Pu X, Zhu L, Tang Z, Liu Q (2013) Pollinators and nectar robbers cause directional selection for large spur circle in Impatiens oxyanthera (Balsaminaceae). Plant Syst Evol 299:1263–1274CrossRefGoogle Scholar
  57. Waser NM, Ollerton J (2006) Plant–pollinator interactions: from specialization to generalization. University of Chicago Press, ChicagoGoogle Scholar
  58. Weberling F (2007) The problem of generalized flowers: morphological aspects. Taxon 56:707–716CrossRefGoogle Scholar
  59. Williams G, Adam P (2001) The insect assemblage visiting the flowers of the subtropical rainforest pioneer tree Alphitonia excelsa (Fenzl) Reiss. ex Benth. (Rhamnaceae). Proc Linn Soc NSW 123:235–259Google Scholar
  60. Willmer P (2011) Pollination and floral ecology. Princeton University Press, OxfordCrossRefGoogle Scholar
  61. Zurbuchen A, Landert L, Klaiber J, Müller A, Hein S, Dorn S (2010) Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol Conserv 143:669–676CrossRefGoogle Scholar
  62. Zych M (2007) On flower visitors and true pollinators: the case of protandrous Heracleum sphondylium L. (Apiaceae). Plant Syst Evol 263:159–179CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Michael Bartoš
    • 1
    • 2
  • Robert Tropek
    • 1
    • 3
    • 5
  • Lukáš Spitzer
    • 3
    • 4
  • Eliška Padyšáková
    • 1
    • 2
  • Petr Janšta
    • 5
  • Jakub Straka
    • 5
  • Michal Tkoč
    • 5
    • 6
  • Štěpán Janeček
    • 2
    • 5
  1. 1.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Institute of BotanyAcademy of Sciences of the Czech RepublicTřeboňCzech Republic
  3. 3.Biology Centre, Institute of EntomologyAcademy of Sciences of the Czech RepublicČeské BudějoviceCzech Republic
  4. 4.Regional Museum VsetínVsetínCzech Republic
  5. 5.Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  6. 6.Department of EntomologyNational MuseumPrague 4Czech Republic

Personalised recommendations