Advertisement

Arthropod-Plant Interactions

, Volume 8, Issue 2, pp 163–169 | Cite as

EPG-Calc: a PHP-based script to calculate electrical penetration graph (EPG) parameters

  • Philippe Giordanengo
Original Paper

Abstract

Electrical penetration graph (EPG) technique is a powerful tool to investigate the hidden feeding behavior of piercing–sucking insects allowing to link recorded EPG waveforms to stylet penetration and complex behaviors related to feeding activities occurring within plant tissue. Calculating the numerous EPG parameters necessary to unravel the complex insect–plant interactions is very time consuming, and few tools have been developed to automate it. EPG-Calc is a rich internet application intended to fill this gap, providing a fast and user-friendly web-based interface that uses analysis files from dedicated software (STYLET+) or database-compatible CSV text files containing waveform codes and cumulative time as input, and produces output files in database-compatible CSV text or Microsoft Excel® XLS format that are directly usable by different statistical analysis softwares. EPG-Calc greatly reduces the time needed for EPG parameters calculation and allows to calculate more than 100 different parameters based on standardized definitions and calculus methods in such a way that avoid confusion between all kinds of definitions and calculations by individual authors.

Keywords

Hemiptera Aphid Feeding behavior Insect–plant interaction Automated software 

Notes

Acknowledgments

We are grateful to Dr Sébastien Dugravot and Dr Julien Saguez for their help in testing the script. Many thanks to Dr Freddy Tjallingii for his invaluable help in calculation methods.

References

  1. Ameline A, Couty A, Martoub M, Sourice S, Giordanengo P (2010) Modification of Macrosiphum euphorbiae colonization behaviour and reproduction on potato plant treated by mineral oil. Entomol Exp Appl 135:77–84CrossRefGoogle Scholar
  2. Backus EA, Habibi J, Yan FM, Ellersieck M (2005) Stylet penetration by adult Homalodisca coagulata on grape: electrical penetration graph waveform characterization, tissue correlation, and possible implications for transmission of Xylella fastidiosa. Ann Entomol Soc Am 98:787–813CrossRefGoogle Scholar
  3. Backus EA, Cline AR, Ellerseick MR, Serrano MS (2007) Lygus hesperus (Hemiptera: Miridae) feeding on cotton: New methods and parameters for analysis of nonsequential electrical penetration graph data. Ann Entomol Soc Am 100:296–310CrossRefGoogle Scholar
  4. Bonani JP, Fereres A, Garzo E, Miranda MP, Appezzato-Da-Gloria B, Lopes JRS (2010) Characterization of electrical penetration graphs of the Asian citrus psyllid, Diaphorina citri, in sweet orange seedlings. Entomol Exp Appl 134:35–49CrossRefGoogle Scholar
  5. Boquel S, Ameline A, Giordanengo P (2011) Assessing aphids potato virus Y-transmission efficiency: a new approach. J Virol Methods 178:63–67PubMedCrossRefGoogle Scholar
  6. Brunissen L, Cherqui A, Pelletier Y, Vincent C, Giordanengo P (2009) Host-plant mediated interactions between two aphid species. Entomol Exp Appl (in press)Google Scholar
  7. Brunissen L, Vincent C, Le Roux V, Giordanengo P (2010) Effects of systemic potato response to wounding and jasmonate on the aphid Macrosiphum euphorbiae (Sternorryncha: Aphididae). J Appl Entomol 134:562–571Google Scholar
  8. Calatayud PA, Rahbé Y, Tjallingii WF, Tertuliano M, Leru B (1994) Electrically recorded feeding-behavior of Cassava mealybug on host and nonhost plants. Entomol Exp Appl 72:219–232CrossRefGoogle Scholar
  9. Carpane P, Wayadande A, Backus E, Dolezal W, Fletcher J (2011) Characterization and correlation of new electrical penetration graph waveforms for the Corn leafhopper (Hemiptera: Cicadellidae). Ann Entomol Soc Am 104:515–525CrossRefGoogle Scholar
  10. Civolani S, Leis M, Grandi G, Garzo E, Pasqualini E, Musacchi S, Chicca M, Castaldelli G, Rossi R, Freddy Tjallingii W (2011) Stylet penetration of Cacopsylla pyri; an electrical penetration graph (EPG) study. J Insect Physiol 57:1407–1419PubMedCrossRefGoogle Scholar
  11. Dugravot S, Brunissen L, Letocart E, Tjallingii WF, Vincent C, Giordanengo P, Cherqui A (2007) Local and systemic responses induced by aphids in Solanum tuberosum plants. Entomol Exp Appl 123:271–277CrossRefGoogle Scholar
  12. Dugravot S, Backus EA, Reardon BJ, Miller TA (2008) Correlations of cibarial muscle activities of Homalodisca spp. sharpshooters (Hemiptera: Cicadellidae) with EPG ingestion waveform and excretion. J Insect Physiol 54:1467–1478PubMedCrossRefGoogle Scholar
  13. Fereres A, Moreno A (2009) Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res 141:158–168PubMedCrossRefGoogle Scholar
  14. Gabrys B, Pawluk M (1999) Acceptability of different species of Brassicaceae as hosts for the cabbage aphid. Entomol Exp Appl 91:105–109CrossRefGoogle Scholar
  15. He YP, Chen L, Chen JM, Zhang JF, Chen LZ, Shen JL, Zhu YC (2011) Electrical penetration graph evidence that pymetrozine toxicity to the rice brown planthopper is by inhibition of phloem feeding. Pest Manag Sci 67:483–491PubMedCrossRefGoogle Scholar
  16. Huang F, Tjallingii WF, Zhang PJ, Zhang JM, Lu YB, Lin JT (2012) EPG waveform characteristics of solenopsis mealybug stylet penetration on cotton. Entomol Exp Appl 143:47–54CrossRefGoogle Scholar
  17. Jacobson AL, Kennedy GG (2013) Effect of cyantraniliprole on feeding behavior and virus transmission of Frankliniella fusca and Frankliniella occidentalis (Thysanoptera: Thripidae) on Capsicum annuum. Crop Prot 54:251–258CrossRefGoogle Scholar
  18. Janssen JAM, Tjallingii WF, Vanlenteren JC (1989) Electrical recording and ultrastructure of stylet penetration by the greenhouse-whitefly. Entomol Exp Appl 52:69–81CrossRefGoogle Scholar
  19. Jiang YX, Lei H, Collar JL, Martin B, Muniz M, Fereres A (1999) Probing and feeding behavior of two distinct biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) on tomato plants. J Econ Entomol 92:357–366Google Scholar
  20. Jin S, Chen ZM, Backus EA, Sun XL, Xiao B (2012) Characterization of EPG waveforms for the tea green leafhopper, Empoasca vitis Gothe (Hemiptera: Cicadellidae), on tea plants and their correlation with stylet activities. J Insect Physiol 58:1235–1244PubMedCrossRefGoogle Scholar
  21. Johnson DD, Walker GP (1999) Intracellular punctures by the adult whitefly Bemisia argentifolii on DC and AC electronic feeding monitors. Entomol Exp Appl 92:257–270CrossRefGoogle Scholar
  22. Kimmins FM, Bosque-Perez NA (1996) Electrical penetration graphs from Cicadulina spp and the inoculation of a persistent virus into maize. Entomol Exp Appl 80:46–49CrossRefGoogle Scholar
  23. Le Roux V, Dugravot S, Campan E, Dubois F, Vincent C, Giordanengo P (2008) Wild Solanum resistance to aphids: antixenosis or antibiosis? J Econ Entomol 101:584–591PubMedCrossRefGoogle Scholar
  24. Lett JM, Granier M, Grondin M, Turpin P, Molinaro F, Chiroleu F, Peterschmitt M, Reynaud B (2001) Electrical penetration graphs from Cicadulina mbila on maize, the fine structure of its stylet pathways and consequences for virus transmission efficiency. Entomol Exp Appl 101:93–109CrossRefGoogle Scholar
  25. McLean DL, Kinsey MG (1984) The precibarial valve and its role in the feeding behavior of the pea aphid, Acyrthosiphon pisum. Bull Entomol Soc Am 30:26–31Google Scholar
  26. Pointeau S, Ameline A, Laurans F, Salle A, Rahbé Y, Bankhead-Dronnet S, Lieutier F (2012) Exceptional plant penetration and feeding upon cortical parenchyma cells by the woolly poplar aphid. J Insect Physiol 58:857–866PubMedCrossRefGoogle Scholar
  27. Pompon J, Quiring D, Giordanengo P, Pelletier Y (2010a) Characterization of Solanum chomatophilum resistance to two aphid potato pests, Macrosiphum euphorbiae (Thomas) and Myzus persicae (Sulzer). Crop Prot 29:891–897CrossRefGoogle Scholar
  28. Pompon J, Quiring D, Giordanengo P, Pelletier Y (2010b) Role of host-plant selection in resistance of wild Solanum species to Macrosiphum euphorbiae and Myzus persicae. Entomol Exp Appl 137:73–85CrossRefGoogle Scholar
  29. Powell G (2005) Intracellular salivation is the aphid activity associated with inoculation of non-persistently transmitted viruses. J Gen Virol 86:469–472PubMedCrossRefGoogle Scholar
  30. Prado E, Tjallingii WF (1994) Aphid activities during sieve element punctures. Entomol Exp Appl 72:157–165CrossRefGoogle Scholar
  31. Prado E, Tjallingii WF (2007) Behavioral evidence for local reduction of aphid-induced resistance. J Insect Sci 7:48PubMedCentralCrossRefGoogle Scholar
  32. Sarria E, Cid M, Garzo E, Fereres A (2009) Excel workbook for automatic parameter calculation of EPG data. Comput Electron Agric 67:35–42CrossRefGoogle Scholar
  33. Spiller NJ (1990) An ultrastructural study of the stylet pathway of the brown planthopper Nilaparvata lugens. Entomol Exp Appl 54:191–193CrossRefGoogle Scholar
  34. Tjallingii WF (1978) Electronic recording of penetration behaviour by aphids. Entomol Exp Appl 24:721–730CrossRefGoogle Scholar
  35. Tjallingii WF (1985a) Electrical nature of recorded signals during stylet penetration by aphids. Entomol Exp Appl 38:177–186CrossRefGoogle Scholar
  36. Tjallingii WF (1985b) Membrane-potentials as an indication for plant-cell penetration by aphid stylets. Entomol Exp Appl 38:187–193CrossRefGoogle Scholar
  37. Tjallingii WF, Hogen Esch T (1993) Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiol Entomol 18:317–328CrossRefGoogle Scholar
  38. Tjallingii FW (2013) List EPG variables. http://www.epgsystems.eu/downloads.php
  39. Ullman DE, McLean DL (1988) The probing behavior of the summer-form pear psylla. Entomol Exp Appl 47:115–125CrossRefGoogle Scholar
  40. Van Giessen WA, Jackson DM (1998) Rapid analysis of electronically monitored homopteran feeding behavior. Ann Entomol Soc Am 91:145–154Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Université de Picardie Jules VerneAmiens Cedex 1France
  2. 2.Sophia Agrobiotech Institute, CNRS 7254, INRA 1355Université de Nice Sophia AntipolisSophia AntipolisFrance

Personalised recommendations