Arthropod-Plant Interactions

, Volume 8, Issue 2, pp 109–122 | Cite as

Pea plant volatiles guide host location behaviour in the pea moth

  • Gunda Thöming
  • Hans Ragnar Norli
  • Helmut Saucke
  • Geir K. Knudsen
Original Paper


Identification of plant volatiles that attract mated insect females for oviposition can provide important information about plant–insect relationships that can be used to develop pest control strategies involving manipulation of the female host search. Our study represents a first step towards identifying volatiles that affect the host location behaviour of the pea moth Cydia nigricana. The behaviours of virgin and mated males and females were analysed in cage experiments testing a two-choice situation at close range and in wind tunnel experiments evaluating upwind orientation over a distance. In both experimental setups, flowering pea plants constituted the most attractive phenological stage for mated females, with 58 % landing on such plants in the wind tunnel. Testing headspace extracts of different phenological stages of pea and of detached pea buds and flowers in the wind tunnel, mated females showed the highest landing responses to volatiles during flower development (budding 42 % and flowering 56 %) and from detached buds (46 %) and flowers (66 %). Volatile compounds collected from the various phenological stages of pea were analysed by gas chromatography–mass spectrometry, and the antennal responses to these headspace collections were evaluated by gas chromatography–electroantennography. Ten antennally active compounds were identified, nine of which were present in the headspace extracts of the whole pea plants at all tested phenological stages and in detached buds and flowers. Overall, our results demonstrate a clear link between host plant phenology, the corresponding plant odour, and the behaviour of mated C. nigricana females.


Cydia nigricana Kairomones Pisum sativum Wind tunnel GC–EAD Odour analysis 



We are very grateful to Rainer Wedemeyer and his team for the collection and supply of pea moth material, Yngve H. Stenstrøm for providing synthetic standards, Yoshiko Shibata-Teufert and Karlheinz Teufert for translation of Japanese literature, Torfinn Torp for statistical advice and Anders Aak for fruitful discussions and valuable comments on the manuscript. We also thank Peter Witzgall for his interest in the project. This study was funded by DFG (Deutsche Forschungsgemeinschaft, TH 1453/2-1), Bioforsk—the Norwegian Institute for Agricultural and Environmental Research and ZFF (Zentrale Forschungsförderung) of University of Kassel.


  1. Aak A, Knudsen GK (2011) Sex differences in olfaction-mediated visual acuity in blowflies and its consequences for gender-specific trapping. Entomol Exp Appl 139:25–34CrossRefGoogle Scholar
  2. Aak A, Knudsen GK, Soleng A (2010) Wind tunnel behavioural response and field trapping of the blowfly Calliphora vicina. Med Vet Entomol 24:250–257PubMedGoogle Scholar
  3. Aak A, Birkemoe T, Knudsen GK (2011) Efficient mass trapping: catching the pest, Calliphora vicina (Diptera, Calliphoridae), of Norwegian stockfish production. J Chem Ecol 37:924–931PubMedCrossRefGoogle Scholar
  4. Aiking H, De Boer J, Vereijken L (2006) Sustainable protein production and consumption: pigs or pea?. Springer, DordrechtCrossRefGoogle Scholar
  5. Akaike H (1987) Factor analysis and AIC. Psychometrika 52:17–332CrossRefGoogle Scholar
  6. Aluja M, Prokopy RJ (1993) Host odor and visual stimulus interaction during intratree host finding behavior of Rhagoletis pommonella flies. J Chem Ecol 19:2671–2696PubMedCrossRefGoogle Scholar
  7. Balasus A, Kratt A, Saucke H (2008) Untersuchungen zur Paarungsstörung des Erbsenwicklers Cydia nigricana F. mit Sexualpheromonen im Feldversuch. Mitt Dtsch Ges Allg Angew Ent 16:253–256Google Scholar
  8. Bengtsson M, Karg G, Kirsch PA, Löfqvist J, Sauer A, Witzgall P (1994) Mating disruption of pea moth Cydia nigricana F. (Lepidoptera, Tortricidae) by a repellent blend of sex-pheromone and attraction inhibitors. J Chem Ecol 20:871–887PubMedCrossRefGoogle Scholar
  9. Bengtsson M, Bäckmann A-C, Libilikas I, Ramirez MI, Borg-Karlson A-K, Ansebo L, Anderson P, Löfqvist J, Witzgall P (2001) Plant odor analysis of apple: antennal response of codling moth females to apple volatiles during phenological development. J Agric Food Chem 49:3736–3741PubMedCrossRefGoogle Scholar
  10. Bengtsson M, Jaastad G, Knudsen G, Kobro S, Bäckmann A-C, Pettersson E, Witzgall P (2006) Plant volatiles mediate attraction to host and non-host plant in apple fruit moth, Argyresthia conjugella. Entomol Exp Appl 118:77–85CrossRefGoogle Scholar
  11. Bruce TJA, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects—finding the right mix. Phytochemistry 72:1605–1611PubMedCrossRefGoogle Scholar
  12. Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274PubMedCrossRefGoogle Scholar
  13. Cha DH, Hesler SP, Moser CL, Nojima S, Linn CE, Roelofs WL, Loeb GM (2008) Flight tunnel responses of female grape berry moth (Paralobesia viteana) to host plants. J Chem Ecol 34:622–627PubMedCrossRefGoogle Scholar
  14. Del Socorro AP, Gregg PC, Alter D, Moore CJ (2010) Development of a synthetic plant volatile-based attracticide for female noctuid moths. I. Potential sources of volatiles attractive to Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Aust J Entomol 49:10–20CrossRefGoogle Scholar
  15. Dijkstra SD, Linnemann AR, van Boekel TAJS (2003) Towards sustainable production of protein-rich foods: appraisal of eight crops for Western Europe. Part II: analysis of the technological aspects of the production chain. Crit Rev Food Sci 43:481–506CrossRefGoogle Scholar
  16. Duckworth RA (2009) The role of behaviour in evolution: a search for mechanism. Evol Ecol 23:513–531CrossRefGoogle Scholar
  17. Dudareva N, Pichersky E (2006) Biology of floral scent. CRC Press, Boca RatonGoogle Scholar
  18. Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440CrossRefGoogle Scholar
  19. FAO (2013) FAO Statistics Division. Accessed 27 May 2013
  20. Feller C, Bleiholder H, Buhr L, Hack H, Hess M, Klose R, Meier U, Strauss R, van den Boom T, Weber E (1995) Phänologische Entwicklungsstadien von Gemüsepflanzen: ΙΙ. Fruchtgemüse und Hülsenfrüchte. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 47:217–232Google Scholar
  21. French BW, Chandler LD, Riedell WE (2007) Effectiveness of corn rootworm (Coleoptera: Chrysomelidae) areawide pest management in South Dakota. J Econ Entomol 100:1542–1554PubMedCrossRefGoogle Scholar
  22. Gould HJ, Legowski TJ (1964) Spray warnings for pea moth (Laspeyresia nigricana) based on its biology in the field. Entomol Exp Appl 7:131–138CrossRefGoogle Scholar
  23. Graham JC (1984) Emergence, dispersal and reproductive biology of Cydia nigricana (F.) (Lepidoptera: Tortricidae). Dissertation, University LondonGoogle Scholar
  24. Gregg PC, del Socorro AP, Henderson GS (2010) Development of a synthetic plant volatile-based attracticide for female noctuid moths. II. Bioassays of synthetic plant volatiles as attractants for adults of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Aust J Entomol 49:21–30CrossRefGoogle Scholar
  25. Harrewijn P, Minks AK, Mollema C (1994) Evolution of plant volatile production in insect–plant relationships. Chemoecology 5:55–73CrossRefGoogle Scholar
  26. Hern A, Dorn S (2004) A female-specific attractant for codling moth, Cydia pomonella, from apple fruit volatiles. Naturwissenschaften 91:77–80PubMedCrossRefGoogle Scholar
  27. Huusela-Veistola E, Jauhiainen L (2006) Expansion of pea cropping increase the risk of pea moth (Cydia nigricana; Lep. Tortricidae) infestation. J Appl Entomol 130:142–149CrossRefGoogle Scholar
  28. Inoue T, Kodama T, Nakanishi H, Tsuji H, Miura Y, Koike Y, Suzuki S (2002) Difference of floral volatiles among sweet pea (Lathyrus odoratus) cultivars. J Agri Sci Tokyo Univ Agric 46:241–249Google Scholar
  29. Jakobsen HB, Hansen M, Christensen MR, Brockhoff PB, Olsen CE (1998) Aroma volatiles of blanched green peas (Pisum sativum L.). J Agric Food Chem 46:3727–3734CrossRefGoogle Scholar
  30. Karlsson MF, Birgersson G, Prado AMC, Bosa F, Bengtsson M, Witzgall P (2009) Plant odor analysis of potato: response of Guatemalan moth to above- and belowground potato volatiles. J Agric Food Chem 57:5903–5909PubMedCrossRefGoogle Scholar
  31. Knudsen JT, Eriksson R, Gershenzon J (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120CrossRefGoogle Scholar
  32. Knudsen GK, Bengtsson M, Kobro S, Jaastad G, Hofsvang T, Witzgall P (2008) Discrepancy in laboratory and field attraction of apple fruit moth Argyresthia conjugella to host plant volatiles. Physiol Entomol 33:1–6CrossRefGoogle Scholar
  33. Kovats E (1958) Gas-chromatograpische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv Chim Acta 4:1915–1932CrossRefGoogle Scholar
  34. Kükenthal W, Renner M (1982) Leitfaden für das Zoologische Praktikum. Gustav Fischer, StuttgartGoogle Scholar
  35. Landolt PJ, Philips TW (1997) Host plant influence on sex pheromone behavior of phytophagous insects. Annu Rev Entomol 42:371–391PubMedCrossRefGoogle Scholar
  36. Langenbuch R (1941) Zur Biologie des Erbsenwicklers. Arbeiten zur Physiologischen und Angewandten Entomologie 8:219–247Google Scholar
  37. Macaulay EDM, Etheridge P, Garthwaite DG, Greenway AR, Wall C, Goodchild RE (1985) Prediction of optimum spraying dates against pea moth, Cydia nigricana (F.), using pheromone traps and temperature measurements. Crop Prot 4:85–98CrossRefGoogle Scholar
  38. Masante-Roca I, Anton S, Delbac L, Dufour M-C, Gardenne C (2007) Attraction of grapevine moth to host and non-host plant parts in the wind tunnel: effect of plant phenology, sex, and mating status. Entomol Exp Appl 122:239–245CrossRefGoogle Scholar
  39. McDonald RS, Borden JH (1997) Host-finding and upwind anemotaxis by Delia antiqua (Diptera: Anthomyiidae) in relation to age, ovarian development, and mating status. Environ Entomol 26:624–631Google Scholar
  40. Mechaber WL, Capaldo CT, Hildebrand JG (2002) Behavioral responses of adult female tobacco hornworms, Manduca sexta, to hostplant volatiles change with age and mating status. J Insect Sci 2:1–8Google Scholar
  41. Montgomery DC (2001) Design and analysis of experiments. Wiley, New YorkGoogle Scholar
  42. Najar-Rodriguez AJ, Galizia CG, Stierle J, Dorn S (2010) Behavioural and neurophysiological responses of an insect to changing ratios of constituents in host plant-derived volatile mixtures. J Exp Biol 213:3388–3397PubMedCrossRefGoogle Scholar
  43. Nicolaisen W (1928) Der Erbsenwickler, Grapholita (Cydia, Laspeyresia) sp., sein Schaden und seine Bekämpfung unter Berücksichtigung der Anfälligkeit verschiedener Erbsensorten. Kühn Archiv, Halle 19:196–256Google Scholar
  44. Piňero JC, Dorn S (2007) Synergism between aromatic compounds and green leaf volatiles derived from the host plant underlies female attraction in the oriental fruit moth. Entomol Exp Appl 125:185–194CrossRefGoogle Scholar
  45. Porter AEA, Griffiths DW, Robertson GW, Sexton R (1999) Floral volatiles of sweet pea Lathyrus odoratus. Phytochemistry 51:211–214CrossRefGoogle Scholar
  46. Reeves JL (2011) Vision should not be overlooked as an important sensory modality for finding host plants. Environ Entomol 40:855–863PubMedCrossRefGoogle Scholar
  47. Renwick JAA, Chew FS (1994) Oviposition behaviour in Lepitoptera. Annu Rev Entomol 39:377–400CrossRefGoogle Scholar
  48. Rojas JC (1999) Influence of age, sex and mating status, egg load, prior exposure to mates, and time of day on host-finding behavior of Mamestra brassicae (Lepidoptera: Noctuidae). Environ Entomol 28:155–162Google Scholar
  49. Saucke H, Balasus A, Finckh M, Formowitz B, Kratt A, Schmidt R (2014) Mating disruption of pea moth (Cydia nigricana (F.)) in organic peas (Pisum sativum L.). Entomol Exp Appl. doi: 10.1111/eea.12153
  50. Saveer AM, Kromann SH, Birgersson G, Bengtsson M, Lindblom T, Balkenius A, Hansson BS, Witzgall P, Becher PG, Ignell R (2012) Floral to green: mating switches moth olfactory coding and preference. Proc R Soc B 279:2314–2322PubMedCentralPubMedCrossRefGoogle Scholar
  51. Schiestl FP (2010) The evolution of floral scents and insect chemical communication. Ecol Lett 13:643–656PubMedCrossRefGoogle Scholar
  52. Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect-plant biology, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  53. Sexton R, Stopford AP, Moodie WT, Porter AEA (2005) Aroma production from cut sweet pea flowers (Lathyrus odoratus): the role of ethylene. Physiol Plantarum 124:381–389CrossRefGoogle Scholar
  54. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W. H. Freeman, New YorkGoogle Scholar
  55. Stein SE (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom 10:770–781CrossRefGoogle Scholar
  56. Stenmark A (1974) Studies on the pea moth (Laspeyresia nigricana Steph.) in central Sweden. Statens Växtskyddsanstalt, Meddelanden 15:451–475Google Scholar
  57. Tasin M, Anfora G, Ioriatti C, Carlin S, de Cristofaro A, Schmidt S, Bengtsson M, Versini G, Witzgall P (2005) Antennal and behavioural responses of grapevine moth Lobesia botrana females to volatiles from grapevine. J Chem Ecol 31:77–87PubMedCrossRefGoogle Scholar
  58. Tasin M, Bäckmann A-C, Bengtsson M, Varela N, Ioriatti C, Witzgall P (2006) Wind tunnel attraction of grapevine moth females, Lobesia botrana, to natural and artificial grape odour. Chemoecology 16:87–92CrossRefGoogle Scholar
  59. Tasin M, Bäckmann A-C, Coracini M, Casado D, Ioriatti C, Witzgall P (2007) Synergism and redundancy in a plant volatile blend attracting grapevine moth females. Phytochemistry 68:203–209PubMedCrossRefGoogle Scholar
  60. Tasin M, Bäckmann A-C, Anfora G, Carlin S, Ioriatti C, Witzgall P (2010) Attraction of female grapevine moth to common and specific olfactory cues from 2 host plants. Chem Senses 35:57–64PubMedCrossRefGoogle Scholar
  61. Thöming G, Saucke H (2011) Key factors affecting the spring emergence of pea moth (Cydia nigricana). Bull Entomol Res 101:127–133PubMedCrossRefGoogle Scholar
  62. Thöming G, Pölitz B, Kühne A, Saucke H (2011) Risk assessment of pea moth Cydia nigricana infestation in organic green peas based on spatiotemporal distribution and phenology of the host plant. Agric For Entomol 13:121–130CrossRefGoogle Scholar
  63. Thöming G, Larsson MC, Hansson BS, Anderson P (2013) Comparison of plant preference hierarchies of male and female moths and the impact of larval rearing hosts. Ecology 94:1744–1752PubMedCrossRefGoogle Scholar
  64. Trona F, Casado D, Coracini M, Bengtsson M, Ioriatti C, Witzgall P (2010) Flight tunnel response of codling moth Cydia pomonella to blends of codlemone, codlemone antagonists and pear ester. Physiol Entomol 35:249–254CrossRefGoogle Scholar
  65. Tulure C, van Dyck H (2009) On the consequences of aggressive male mate-locating behaviour and micro-climate for female host plant use in the butterfly Lycaena hippothoe. Behav Ecol Sociobiol 63:1581–1591CrossRefGoogle Scholar
  66. Webster B, Bruce T, Pickett J, Hardie J (2010a) Volatile functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Anim Behav 79:451–457CrossRefGoogle Scholar
  67. Webster B, Gezan S, Bruce T, Hardie J, Pickett J (2010b) Between plant and diurnal variation in quantities and ratios of volatile compounds emitted by Vicia faba plants. Phytochemistry 71:81–89PubMedCrossRefGoogle Scholar
  68. Witzgall P, Bengtsson M, Karg G, Bäckman A-C, Streinz L, Kirsch PA, Blum Z, Löfqvist J (1996) Behavioral observation and measurements of aerial pheromone in a mating disruption trial against pea moth Cydia nigricana F. (Lepidoptera, Tortricidae). J Chem Ecol 22:191–206PubMedCrossRefGoogle Scholar
  69. Witzgall P, Ansebo L, Yang Z, Angeli G, Sauphanor B, Bengtsson M (2005) Plant volatiles affect oviposition by codling moth. Chemoecology 15:77–83CrossRefGoogle Scholar
  70. Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36:80–100PubMedCrossRefGoogle Scholar
  71. Wright DW, Geering QA (1948) The biology and control of the pea moth, Laspeyresia nigricana, Steph. Bull Entomol Res 39:57–84CrossRefGoogle Scholar
  72. Wright DW, Geering QA, Dunn JA (1951) Varietal differences in the susceptibility of peas to attack by the pea moth, Laspeyresia nigricana (Steph.). Bull Entomol Res 41:663–667CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Gunda Thöming
    • 1
  • Hans Ragnar Norli
    • 1
  • Helmut Saucke
    • 2
  • Geir K. Knudsen
    • 1
  1. 1.Division of Plant Health and Plant ProtectionBioforsk, Norwegian Institute for Agricultural and Environmental ResearchÅsNorway
  2. 2.Department of Ecological Plant Protection, Faculty of Organic Agricultural SciencesUniversity of KasselWitzenhausenGermany

Personalised recommendations