Arthropod-Plant Interactions

, Volume 7, Issue 5, pp 567–577 | Cite as

Aphid responses to volatile cues from turnip plants (Brassica rapa) infested with phloem-feeding and chewing herbivores

  • François J. Verheggen
  • Eric Haubruge
  • Consuelo M. De Moraes
  • Mark C. Mescher
Original Paper


Herbivore-induced plant volatiles provide foraging cues for herbivores and for herbivores’ natural enemies. Aphids induce plant volatile emissions and also utilize plant-derived olfactory volatile cues, but the chemical ecology of aphids and other phloem-feeding insects is less extensively documented than that of chewing insects. Here, we characterize the volatile cues emitted by turnip plants (Brassica rapa) under attack by an aphid (Myzus persicae) or by the chewing lepidopteran larva Heliothis virescens. We also tested the behavioral responses of M. persicae individuals to the odors of undamaged and herbivore-damaged plants presented singly or in combination, as well as to the odor of crushed conspecifics (simulating predation). Gas chromatographic analysis of the volatile blend of infested turnips revealed distinct profiles for both aphid- and caterpillar-induced plants, with induced compounds including green-leaf alcohols, esters, and isothiocyanates. In behavioral trials, aphids exhibited increased activity in the presence of plant odors and positive attraction to undamaged turnip plants. However, aphids exhibited a strong preference for the odors of healthy versus plants subjected to herbivore damage, and neither aphid- or caterpillar-damaged plants were attractive compared to clean-air controls. Reduced aphid attraction to herbivore-infested plants may be mediated by changes in the volatile blend constituent composition, including large amounts of isothiocyanates and green-leaf volatiles or, in the case of aphid-infested plants, of the aphid alarm pheromone, (E)-β-farnesene.


Herbivore-induced plant volatiles Plant defenses Brassica rapa Myzus persicae Heliothis virescens 


  1. Agelopoulos NG, Keller MA (1994) Plant natural enemy association in tritrophic system, Cotesia-Rubecula–Pieris-rapae–Brassicaceae (Cruciferae). 3. Collection and identification of plant and frass volatiles. J Chem Ecol 20(8):1955–1967CrossRefGoogle Scholar
  2. Almohamad R, Verheggen FJ, Francis F, Lognay G, Haubruge E (2008) Emission of alarm pheromone by non-preyed aphid colonies. J Appl Entomol 132:601–604CrossRefGoogle Scholar
  3. Bartlet E, Blight MM, Lane P, Williams IH (1997) The responses of the cabbage seed weevil Ceutorhynchus assimilis to volatile compounds from oilseed rape in a linear track olfactometer. Entomol Exp Appl 85(3):257–262CrossRefGoogle Scholar
  4. Beale MH, Birkett MA, Bruce TJA, Chamberlain K, Field LM, Huttly AK, Martin JL, Parker R, Phillips AL, Pickett JA, Prosser IM, Shewry PR, Smart LE, Wadhams LJ, Woodcock CM, Zhang Y (2006) Aphid alarm pheromone produced by transgenic plants affect aphid and parasitoid behavior. P Natl Acad Sci USA 103(27):10509–10513CrossRefGoogle Scholar
  5. Bernasconi ML, Turlings TCJ, Ambrosetti L, Bassetti P, Dorn S (1998) Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol Exp Appl 87(2):133–142CrossRefGoogle Scholar
  6. Blande JD, Pickett JA, Poppy GM (2004) Attack rate and success of the parasitoid Diaeretiella rapae on specialist and generalist feeding aphids. J Chem Ecol 33:1781–1795CrossRefGoogle Scholar
  7. Blande JD, Pickett JA, Poppy GM (2007) A comparison of semiochemically mediated interactions involving specialist and generalist Brassica-feeding aphids and the braconid parasitoid Diaeretiella rapae. J Chem Ecol 33(4):767–779PubMedCrossRefGoogle Scholar
  8. Bones AM, Rossiter JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67:1053–1067PubMedCrossRefGoogle Scholar
  9. Bowers WS, Webb RE, Nault LR (1972) Aphid alarm pheromone—isolation, identification, synthesis. Science 177(4054):1121PubMedCrossRefGoogle Scholar
  10. Cavaleiro C, Salgueiro LR, Antunes T, Sevinate-Pinto I, Barros JG (2002) Composition of the essential oil and micromorphology of trichomes of Teucrium salviastrum, an endemic species from Portugal. Flav Frag J 17(4):287–291CrossRefGoogle Scholar
  11. Chen SX, Petersen BL, Olsen CE, Schulz A, Halkier BA (2001) Long-distance phloem transport of glucosinolates in Arabidopsis. Plant Physiol 127:194–201PubMedCrossRefGoogle Scholar
  12. David CT, Hardie J (1988) The visual responses of free-flying summer and autumn forms of the black bean aphid, Aphis fabae, in an automated flight chamber. Physiol Entomol 13:277–284CrossRefGoogle Scholar
  13. Dawson GW, Griffiths DC, Pickett JA, Smith MC, Woodcock CM (1984) Natural inhibition of the aphid alarm pheromone. Entomol Exp Appl 36(2):197–199CrossRefGoogle Scholar
  14. De Moraes CM, Lewis WJ, Paré PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393(11):570–573CrossRefGoogle Scholar
  15. De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410(6828):577–580PubMedCrossRefGoogle Scholar
  16. de Vos M, Jander G (2010) Volatile communication in plant-aphid interactions. Curr Opin Plant Biol 13(4):366–371PubMedCrossRefGoogle Scholar
  17. Dicke M, Baarlen PV, Wessels R, Dijkman H (1993) Herbivory induces systemic production of plant volatiles that attract predators of the herbivore—extraction of endogenous elicitor. J Chem Ecol 19(3):581–599CrossRefGoogle Scholar
  18. Doughty KJ, Blight MM, Bock CH, Fieldsend JK, Pickett JA (1996) Release of alkenyl isothiocyanates and other volatiles from Brassica rapa seedlings during infection by Alternaria brassicae. Phytochemistry 43(2):371–374CrossRefGoogle Scholar
  19. Edwards LJ, Siddball JB, Dunham LL, Uden P, Kislow CJ (1973) Trans-beta-farnesene, alarm pheromone of the green peach aphid, Myzus persicae (Sulzer). Nature 241(5385):126–127CrossRefGoogle Scholar
  20. Eigenbrode SD, Ding H, Shiel P, Berger PH (2002) Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). P Roy Soc B Biol Sci 269(1490):455–460CrossRefGoogle Scholar
  21. Farmer EE (2001) Surface-to-air signals. Nature 411(6839):854–856PubMedCrossRefGoogle Scholar
  22. Farmer EE, Ryan CA (1990) Interplant communication—airborne methyl jasmonate induces synthesis of proteinase-inhibitors in plant-leaves. P Natl Acad Sci USA 87:7713–7716CrossRefGoogle Scholar
  23. Francis F, Vandermoten S, Verheggen F, Lognay G, Haubruge E (2005) Is the (E)-b-Farnesene only volatile terpenoid in aphids? J Appl Entomol 129(1):6–11CrossRefGoogle Scholar
  24. Gibson RW, Pickett JA (1983) Wild potato repels aphids by release of aphid alarm pheromone. Nature 302:608–609CrossRefGoogle Scholar
  25. Hardie J, Pickett JA, Pow EM, Smiley DWM (1999) Aphids. In: Hardie J, Minks AK (eds) Pheromones of non-Lepidopteran insects associated with agricultural plants. CAB International, Wallingford, pp 227–250Google Scholar
  26. Isaacs R, Hardie J, Hick AJ, Pye BJ, Smart LE, Wadhams LJ, Woodcock CM (1993) Behavioral-responses of Aphis fabae to isothiocyanates in the laboratory and field. Pestic Sci 39(4):349–355CrossRefGoogle Scholar
  27. Jiménez-Martínez ES, Bosque-Pérez NA, Berger PH, Zemetra RS, Ding H, Eigenbrode SD (2004) Volatile cues influence the response of Rhopalosiphum padi (Homoptera: Aphididae) to Barley yellow dwarf virus-infected transgenic and untransformed wheat. Environ Entomol 33(5):1207–1216CrossRefGoogle Scholar
  28. Jones AME, Bridges M, Bones AM, Cole R, Rossiter JT (2001) Purification and characterization of a non-plant myrosinase from the cabbage aphid Brevicoryne brassicae (L.). Insect Biochem Mol Biol 31:1–5PubMedCrossRefGoogle Scholar
  29. Kan W, Zhang F, Zhang ZN (2002) Behavior-modulating plant volatile chemical for aphids. Chin Sci Bull 47(2):115–117Google Scholar
  30. Leroy PD, Sabri A, Heuskin S, Thonart P, Lognay G, Verheggen FJ, Francis F, Brostaux Y, Felton GW, Haubruge E (2011) Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nat Commun 2:348PubMedCrossRefGoogle Scholar
  31. Leroy PD, Schillings T, Farmakidis J, Heuskin S, Lognay G, Verheggen FJ, Brostaux Y, Haubruge E, Francis F (2012) Testing semiochemicals from aphid, plant and conspecific: attraction of Harmonia axyridis. Insect Sci 19:372–382CrossRefGoogle Scholar
  32. MacGibbon DB, Beuzenberg EJ (1978) Location of glucosinolase in Brevicoryne brassicae and Lipaphis erysimi (Aphididae). N Z J Sci 21:389–392Google Scholar
  33. Mauck KE, De Moraes CM, Mescher MC (2010) Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. P Natl Acad Sci USA 107(8):3600–3605CrossRefGoogle Scholar
  34. Nottingham SF, Hardie J, Dawson GW, Hick AJ, Pickett JA, Wadhams L, Woodcock CM (1991) Behavioral and electrophysiological responses of aphids to host and nonhost plant volatiles. J Chem Ecol 17(6):1231–1242CrossRefGoogle Scholar
  35. Paré PW, Tumlinson JH (1997) Induced synthesis of plant volatiles. Nature 385(6611):30–31CrossRefGoogle Scholar
  36. Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331PubMedCrossRefGoogle Scholar
  37. Peñaflor MFGV, Erb M, Miranda LA, Werneburg AG, Bento JMS (2011) Herbivore-induced plant volatiles can serve as host location cues for a generalist and a specialist egg parasitoid. J Chem Ecol 37(12):1304–1313PubMedCrossRefGoogle Scholar
  38. Pettersson J, Quiroz A, Stephansson D, Niemeyer HM (1995) Odor communication of Rhopalosiphum padi on grasses. Entomol Exp Appl 76(3):325–328CrossRefGoogle Scholar
  39. Pickett JA, Glinwood RT (2007) Chemical ecology. In: van Emden H, Harrington R (eds) Aphids as crop pests. CAB International, Wallingford, pp 235–260CrossRefGoogle Scholar
  40. Pickett JA, Wadhams LJ, Woodcock CM (1992) The chemical ecology of aphids. Annu Rev Entomol 37:69–90CrossRefGoogle Scholar
  41. Piesik D, Wenda-Piesik A, Kotwica K, Lyszczarz A, Delaney KJ (2011) Gastrophysa polygoni herbivory on Rumex confertus: single leaf VOC induction and dose dependent herbivore attraction/repellence to individual compounds. J Plant Physiol 168(17):2134–2138PubMedCrossRefGoogle Scholar
  42. Powell G, Hardie J (2001) The chemical ecology of aphid host alternation: how do return migrants find the primary host plant? Appl Entomol Zool 36:259–267CrossRefGoogle Scholar
  43. Röse USR, Tumlinson JH (2004) Volatiles released from cotton plants in response to Helicoverpa zea feeding damage on cotton flower buds. Planta 218(5):824–832PubMedCrossRefGoogle Scholar
  44. Runyon J, Mescher M, De Moraes C (2006) Volatile chemical cues guide host location and host selection by parasitic plants. Science 313:1964–1967PubMedCrossRefGoogle Scholar
  45. Schwartzberg EG, Böröczky K, Tumlinson JH (2011) Pea Aphids, Acyrthosiphon Pisum, suppress induced plant volatiles in broad bean, Vicia Faba. J Chem Ecol 37(10):1055–1062PubMedCrossRefGoogle Scholar
  46. Stout MJ, Workman KV, Bostock RM, Duffey SS (1998) Specificity of induced resistance in the tomato, Lycopersicon esculentum. Oecologia 113:74–81CrossRefGoogle Scholar
  47. Szafranek B, Malinski E, Szafranek J (1998) The sesquiterpene composition of leaf cuticular neutral lipids of ten polish varieties of Solanum tuberosum. J Sci Food Agric 76(4):588–592CrossRefGoogle Scholar
  48. Tollsten L, Bergstrom G (1988) Headspace volatiles of whole plants and macerated plant-parts of Brassica and Sinapis. Phytochemistry 27(12):4013–4018CrossRefGoogle Scholar
  49. Turlings TCJ, Ton J (2006) Exploiting scents of distress: the prospect of manipulating herbivore-induce plant odour to enhance the control of agricultural pests. Curr Opin Plant Biol 9:421–427PubMedCrossRefGoogle Scholar
  50. Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250(4985):1251–1253PubMedCrossRefGoogle Scholar
  51. Turlings TCJ, Tumlinson JH, Heath RR, Proveaux AT, Doolittle RE (1991) Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. J Chem Ecol 17(11):2235–2251CrossRefGoogle Scholar
  52. Vandermoten S, Mescher MC, Francis F, Haubruge E, Verheggen F (2012) Aphid alarm pheromone: an overview of current knowledge on biosynthesis and functions. Insect Biochem Mol Biol 42(3):155–163PubMedCrossRefGoogle Scholar
  53. Vaughn SF, Boydston RA (1997) Volatile allelochemicals released by crucifer green manures. J Chem Ecol 23:2107–2116CrossRefGoogle Scholar
  54. Verheggen FJ, Fagel Q, Heuskin S, Lognay G, Francis F, Haubruge E (2007) Electrophysiological and behavioral responses of the multicolored Asian Lady Beetle, Harmonia axyridis Pallas, to sesquiterpene semiochemicals. J Chem Ecol 33:2148–2155PubMedCrossRefGoogle Scholar
  55. Verheggen FJ, Arnaud L, Bartram S, Gohy M, Haubruge E (2008) Aphid and plant secondary metabolites induce oviposition in an aphidophagous hoverfly. J Chem Ecol 34:301–307PubMedCrossRefGoogle Scholar
  56. Verheggen FJ, Haubruge E, De Moraes CM, Mescher MC (2009) Social environment influences aphid production of alarm pheromone. Behav Ecol 20:283–288CrossRefGoogle Scholar
  57. Verheggen FJ, Haubruge E, Mescher MC (2010) Alarm pheromones—chemical signaling in response to danger. Vitam Horm 83(C):215–239Google Scholar
  58. Vet LEM, Lenteren JCV, Heymans M, Meelis E (1983) An airflow olfactometer for measuring olfactory responses of hymenopterous parasitoids and other small insects. Physiol Entomol 8:97–106CrossRefGoogle Scholar
  59. von Mérey G, Veyrat N, Mahuku G, Valdez RL, Turlings TCJ, D’Alessandro M (2011) Dispensing synthetic green leaf volatiles in maize fields increases the release of sesquiterpenes by the plants, but has little effect on the attraction of pest and beneficial insects. Phytochemistry 72(14–15):1838–1847CrossRefGoogle Scholar
  60. Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216PubMedGoogle Scholar
  61. Weber G, Oswald S, Zöllner U (1986) Suitability of rape cultivars with different levels of glucosinolate content for Brevicoryne brassicae and Myzus persicae. Z. Pflanzenkr. Pflanzenschultz 93:113–124Google Scholar
  62. Webster B, Bruce T, Dufour S, Birkemeyer C, Birkett M, Hardie J, Pickett J (2008) Identification of volatile compounds used in host location by the black bean aphid, Aphis fabae. J Chem Ecol 34(9):1153–1161PubMedCrossRefGoogle Scholar
  63. Werner BJ, Mowry TM, Bosque-Pérez NA, Ding H, Eigenbrode SD (2009) Changes in green peach aphid responses to Potato leafroll virus-induced volatiles emitted during disease progression. Environ Entomol 38(5):1429–1438PubMedCrossRefGoogle Scholar
  64. Wientjens WH, Lakwijk AC, Vanderma T (1973) Alarm pheromone of grain aphids. Experientia 29:658–660CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • François J. Verheggen
    • 1
  • Eric Haubruge
    • 1
  • Consuelo M. De Moraes
    • 2
  • Mark C. Mescher
    • 2
  1. 1.Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio TechLiege UniversityGemblouxBelgium
  2. 2.Department of EntomologyPennsylvania State UniversityState CollegeUSA

Personalised recommendations