Arthropod-Plant Interactions

, Volume 7, Issue 2, pp 147–158 | Cite as

Fertilizer application decreases insect abundance on Plantago lanceolata: a large-scale experiment in three geographic regions

  • Christine Hancock
  • Nicole Wäschke
  • Uta Schumacher
  • Karl Eduard Linsenmair
  • Torsten Meiners
  • Elisabeth Obermaier
Original Paper


Humans have substantially altered the nitrogen cycle of ecosystems through the application of agricultural fertilizer. Fertilization may not only affect plant species diversity, but also insect dynamics by altering plant nitrogen supplies. We investigated the effect of experimental fertilization on the vegetation, with the ribwort plantain as the focal plant, and on higher trophic levels on differently managed grasslands throughout Germany. Over a period of 2 years, we examined two specialist herbivores and their parasitoid on Plantago lanceolata L., and the composition and structure of the surrounding vegetation. Over 70 sites in three geographic regions, within the large-scale project “German Biodiversity Exploratories”, were included in the study. The model system consisted of the host plant P. lanceolata L., the monophagous weevils Mecinus labilis Herbst and M. pascuorum Gyllenhal, and their parasitoid Mesopolobus incultus Walker. Fertilization decreased plant species richness and host plant abundance, whereas it enhanced the total vegetation growth. The increased size and heigher leaf nitrogen content did not improve herbivore performance. On the contrary, the abundance of the two herbivores was decreased by fertilization. The parasitoid depended on the abundance of one of its hosts, M. pascuorum (positively density-dependent). Reduced herbivore abundance due to fertilization might be explained by a lower abundance of the host plant, a lower stalk number, and by changed patterns of host localization within higher vegetation. Fertilization negatively affected the third trophic level by cascading up via host abundance. The relationships between fertilization, surrounding vegetation and the tritrophic system were measured throughout the three regions and over the 2-year period. Our findings present consequences of intensification for a plant–herbivore–parasitoid system, and may have significant implications for the conservation of multitrophic systems in managed grasslands.


Fertilization Nitrogen Tritrophic interaction Plant species richness Grassland management Vegetation structure 



The work has been funded by the DFG (German research foundation) Priority Program 1374 “Infrastructure-Biodiversity-Exploratories” [OB 185/2-1, ME 1810/5-1]. We would like to thank the DFG for funding the large-scale and long-term functional biodiversity research project Biodiversity Exploratories, the local implementation teams for providing the plot infrastructure and the BEO for the organization. Field work permits were given by state environmental offices according to § 72 BbgNatSchG. Markus Fischer, Elisabeth K. V. Kalko, K. Eduard Linsenmair, Dominik Hessenmöller, Jens Nieschulze, Daniel Prati, Ingo Schöning, François Buscot, Ernst-Detlef Schulze and Wolfgang W. Weisser for their role in setting up the Biodiversity Exploratories project. We want to thank Manfred Forstreuter for technical help with the C/N analyser, Peter Sprick for the help with weevil species identification, Stefan Vidal and Lars Krogmann for identification of the hatched parasitoids, and Swen Renner, Sonja Gockel and Martin Gorke for their support in the three exploratories. Furthermore, we thank Sabrina Arnold, Sophia Bode, Anne Brauckmann, Philipp Braun, Judith Escher, Andrea Hilpert, Matthias Jäger, Benjamin Kolbe, Nadine Kunkel, Daniel Roth, Jakob Sänger, Sebastian Stragies and Michael Walther for their fieldwork assistance and help in the laboratory. At last, we thank Karen Voss and Kathryn Barto for English revision.


  1. Åsman K, Ekbom B, Rämert B (2001) Effect of intercropping on oviposition and emigration behavior of the leek moth (Lepidoptera:Acrolepiidae) and the diamondback moth (Lepidoptera:Plutellidae). Environ Entomol 30:288–294CrossRefGoogle Scholar
  2. Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT (2004) Grazing systems, ecosystem responses, and global change. Annu Rev Environ Resour 29:261–299CrossRefGoogle Scholar
  3. Baessler C, Klotz S (2006) Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agric Ecosyst Environ 115:43–50CrossRefGoogle Scholar
  4. Bentz JA, Reeves J, Barbosa P, Francis B (2006) The effect of nitrogen fertilizer applied to Euphorbia pulcherrima on the parasitization of Bemisia argentifolii by the parasitoid Encarsia formosa. Entomol Exp Appl 78:105–110CrossRefGoogle Scholar
  5. Berdegué M, Reitz SR, Trumble JT (1998) Host plant selection and development in Spodoptera exigua: do mother and offspring know best? Entomol Exp Appl 89:57–64CrossRefGoogle Scholar
  6. Bernays E, Graham M (1988) On the evolution of hostspecificity in phytophagous arthropods. Ecology 69:886–892CrossRefGoogle Scholar
  7. Billeter R, Liira J, Bailey D et al (2008) Indicators for biodiversity in agricultural landscapes: a pan-European study. J Appl Ecol 45:141–150CrossRefGoogle Scholar
  8. Bobbink R, Bik L, Willems JH (1988) Effects of nitrogen fertilization on vegetation structure and dominance of Brachypodium pinnatum L. Beauv. in chalk grassland. Acta Bot Neerl 37:231–242Google Scholar
  9. Bowers MD, Stamp NE (1992) Chemical variation within and between individuals of Plantago lanceolata (Plantaginaceae). J Chem Ecol 18:985–995CrossRefGoogle Scholar
  10. Brodbeck BV, Mizzel RF, French WJ, Anderson PC, Aldrich JH (1990) Amino acids as determinants of host preference for the xylem feeding leafhopper, Homalodisca coagulate (Homoptera:Cicadellidae). Oecologia 83:338–345Google Scholar
  11. Cavers PB, Bassett IJ, Crompton CW (1980) The biology of Canadian weeds. 47. Plantago lanceolata L. Can J Plant Sci 60:1269–1282CrossRefGoogle Scholar
  12. Cease AJ, Elser J, Ford C, Hao S, Kang L, Harrison JF (2012) Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science 335:467. doi: 10.1126/science.1214433 PubMedCrossRefGoogle Scholar
  13. Coll M, Bottrell DG (1994) Effects of nonhost plants on an insect herbivore in diverse habitats. Ecology 75:723–731CrossRefGoogle Scholar
  14. Coll M, Bottrell DG (1996) Movement of an insect parasitoid in simple and diverse plant assamblages. Ecol Entomol 21:141–149. doi: 10.1111/j.1365-2311.1996.tb01180.x CrossRefGoogle Scholar
  15. Davidson AW, Potter DA (1995) Response of plant feeding, predatory, and soil-inhabiting invertebrates to Acremonium endophyte and nitrogen fertilization in tall fescue turf. J Econ Entomol 88:367–379Google Scholar
  16. De Deyn GB, Raaijmakers CE, Van der Putten WH (2004) Plant community development is affected by nutrients and soil biota. J Ecol 92:824–834CrossRefGoogle Scholar
  17. Denno RF, Larsson S, Olmstead KL (1990) Role of enemy-free space and plant quality in host-plant selection by willow beetles. Ecology 71:124–137CrossRefGoogle Scholar
  18. Dickason EA (1968) Observations on the biology of gymnaetron pasuorum (Gyll.) (Coleoptera:Curculionidae). Coleopts Bull 22:11–15Google Scholar
  19. Dierschke H, Briemle G (2002) Kulturgrasland: Wiesen, Weiden und verwandte Stauden-fluren. Verlag Eugen Ulmer GmbH & Co., StuttgartGoogle Scholar
  20. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Verlag Erich Goltze KG, GöttingenGoogle Scholar
  21. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Ulmer, StuttgartGoogle Scholar
  22. Fajer ED, Bowers MD, Bazzaz FA (1992) The effects of nutrients and enriched CO2 environments on production of carbon-based allelochemicals in Plantago: A test of the carbon/nutrient balance hypothesis. Am Nat 140:707–723PubMedCrossRefGoogle Scholar
  23. Finch S, Collier RH (2000) Host-plant selection by insects—a theory based on “appropriate/inappropriate landings” by pest insects of cruciferous plants. Entomol Exp Appl 96:91–102CrossRefGoogle Scholar
  24. Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schöning I, Schumacher U, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze E-D, Weisser W (2010) Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol 11:473–485CrossRefGoogle Scholar
  25. Fischer K, Fiedler K (2000) Response of the copper butterfly Lycaena tityrus to increased leaf nitrogen in natural food plants: evidence against the nitrogen limitation hypothesis. Oecologia 124:235–241CrossRefGoogle Scholar
  26. Foster BL, Gross KL (1998) Species richness in a successional grassland: effects of nitrogen enrichment and plant litter. Ecology 79:2593–2602CrossRefGoogle Scholar
  27. Garratt MPD, Leather SR, Wrigth DJ (2010) Tritrophic effects of organic and conventional fertilisers on a cereal- aphid- parasitoid system. Entomol Exp Appl 3:210–219. doi: 10.1111/j.1570-7458.2009.00957.x Google Scholar
  28. Goodwin BJ, Fahrig L (2002) Effect of landscape structure on the movement behaviour of a specialized goldenrod beetle, Trirhabda borealis. Can J Zool 80:24–35CrossRefGoogle Scholar
  29. Gough L, Osenberg CW, Gross KL, Collins SL (2000) Fertilization effects on species density and primary productivity in several herbaceous plant communities. Oikos 89:428–439CrossRefGoogle Scholar
  30. Gratton C, Denno RF (2003) Seasonal shift from bottom–up to top–down impact in phytophagous insect populations. Oecologia 134:487–495PubMedGoogle Scholar
  31. Hannunen S (2002) Vegetation architecture and redistribution of insects moving on the plant surface. Ecol Model 155:149–157CrossRefGoogle Scholar
  32. Hartley SE, Gardner SM, Mitchell RJ (2003) Indirect effects of grazing and nutrient addition on the hemipteran community of heather moorlands. J Appl Ecol 40:793–803CrossRefGoogle Scholar
  33. Jarzomski CM, Stamp NE, Bowers MD (2000) Effects of plant phenology, nutrients and herbivory on growth and defensive chemistry of plantain, Plantago lanceolata. Oikos 88:371–379CrossRefGoogle Scholar
  34. Joern A, Behmer ST (1998) Impact of diet quality on demographic attributes in adult grasshoppers and the nitrogen limitation hypothesis. Ecol Entomol 23:174–184CrossRefGoogle Scholar
  35. Jopp F (2006) The impact of local spatial resistance on the movement behaviour of Tenebrio molitor L. Cent Euro J Biol 1:412–429. doi: 10.2478/s11535-006-0025-3 CrossRefGoogle Scholar
  36. Kaneshiro LN, Johnson MW (1996) Tritrophic effects of leaf nitrogen on Liriomyza trifolii (Burgess) and an associated parasitoid Chrysocharis oscinidis (Ashmead) on Bean. Biol Control 2:186–192CrossRefGoogle Scholar
  37. Krauss J, Härri SA, Bush L, Husi R, Bigler L, Power SA, Müller CB (2007) Effects of fertilizer, fungal endophytes and plant cultivar on the performance of insect herbivores and their natural enemies. Funct Ecol 21:107–116CrossRefGoogle Scholar
  38. Langelotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139:1–10CrossRefGoogle Scholar
  39. Lohse GA (1983) Unterfamilie mecininae. In: Freude H, Harde KW, Lohse GA (eds) Die Käfer Mitteleuropas, band 11. Goecke and Evers Verlag, KrefeldGoogle Scholar
  40. Mattson WJ Jr (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161CrossRefGoogle Scholar
  41. Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509PubMedCrossRefGoogle Scholar
  42. McNeill S, Southwood TRE (1978) The role of nitrogen in the development of insect plant relationships. In: Harborne JB (ed) Biochemical aspects of plant and animal coevolution. Academic Press, London, pp 77–98Google Scholar
  43. Mohd Norowi H, Perry JN, Powell W, Rennolls K (1999) The effect of spatial scale on interactions between two weevils and their food plant. Acta Oecologica 20:537–549CrossRefGoogle Scholar
  44. Mohd Norowi H, Perry JN, Powell W, Rennolls K (2000) The effect of spatial scale on the interactions between two weevils and their parasitoid. Ecol Entomol 25:188–196CrossRefGoogle Scholar
  45. Moon DC, Rossi AM, Stiling P (2000) The effects of abiotically induced changes in host plant quality (and morphology) on a salt marsh planthopper and its parasitoid. Ecol Entomol 25:325–331CrossRefGoogle Scholar
  46. Obermaier E, Zwölfer H (1999) Plant quality or quantity? Host exploitation strategies in three Chrysomelidae species associated with Asteraceae host plants. Entomol Exp Appl 92:165–177. doi: 10.1046/j.1570-7458.1999.00536.x CrossRefGoogle Scholar
  47. Obermaier E, Heisswolf A, Poethke HJ, Randlkofer B, Meiners T (2008) Plant architecture and vegetation structure: two ways for insect herbivores to escape parasitism. Eur J Entomol 105:233–240Google Scholar
  48. Opitz v. Boberfeld W (1994) Grünlandlehre. Biologische und ökologische Grundlagen. Verl. Eugen Ulmer, StuttgartGoogle Scholar
  49. Perrin RM (1977) Pest management in multiple cropping systems. Agro Ecosyst 3:93–118CrossRefGoogle Scholar
  50. Perrin RM, Phillips MC (1978) Some effects of mixed cropping on the population dynamics of insect pests. Entomol Exp Appl 24:585–593. doi: 10.1007/BF02385112 CrossRefGoogle Scholar
  51. Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE (1980) Interactions among three trophic levels: influence of plants on interactions between herbivores and natural enemies. Annu Rev Ecol Syst 11:41–65CrossRefGoogle Scholar
  52. Rajaniemi TK (2002) Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses. J Ecol 90:316–324CrossRefGoogle Scholar
  53. Randlkofer B, Jordan F, Mitesser O, Meiners T, Obermaier E (2009) Effect of vegetation density, height and connectivity on the oviposition pattern of the leaf beetle Galeruca tanaceti L. Entomol Exp Appl 132:134–146CrossRefGoogle Scholar
  54. Randlkofer B, Obermaier E, Casas J, Meiners T (2010) Connectivity counts—disentangling effects of vegetation structure elements on the searching movement of a parasitoid. Ecol Entomol 35:446–455Google Scholar
  55. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  56. Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–120CrossRefGoogle Scholar
  57. Sarfraz M, Dosdall LM, Keddie BA (2009) Host plant nutritional quality affects the performance of the parasitoid Diadegma insulare. Biol Control 51:34–41CrossRefGoogle Scholar
  58. Scherber C, Mwangi PN, Temperton VM, Roscher C, Schumacher J, Schmid B, Weisser WW (2006) Effects of plant diversity on invertebrate herbivory in experimental grassland. Oecologia 147:489–500PubMedCrossRefGoogle Scholar
  59. Schmeil O, Fitschen J (2003) Flora von Deutschland und angrenzender Länder. Quelle § Meyer Verlag GmbH & Co., WiebelsheimGoogle Scholar
  60. Smart SM, Thompson K, Marrs RH, Le Duc MG, Maskell LC, Firbank LG (2006) Biotic homogenization and changes in species diversity across human-modified ecosystems. Proc R Soc B 273:2659–2665PubMedCrossRefGoogle Scholar
  61. Stamp NE, Bowers MD (2000) Do enemies of herbivores influence plant growth and chemistry? Evidence from a seminatural experiment. J Chem Ecol 26:2367–2386CrossRefGoogle Scholar
  62. Stilling P, Moon DC (2005) Quality or quantity: the direct and indirect effects of host plants on herbivores and their natural enemies. Oecologia 142:413–420. doi: 10.1007/s00442-004-1739-4 CrossRefGoogle Scholar
  63. Tschanz B, Schmid E, Bacher S (2005) Host plant exposure determines larval vulnerability—do prey females know? Funct Ecol 19:391–395CrossRefGoogle Scholar
  64. Tscharntke T, Hawkins BA (2002) Multitrophic level interactions. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  65. Unsicker SB, Baer N, Kahmen A, Wagner M, Buchmann N, Weisser WW (2006) Invertebrate herbivory along a gradient of plant species diversity in extensively managed grassland. Oecologia 150:233–246PubMedCrossRefGoogle Scholar
  66. Van der Aart PJM, Vulto JC (1992) Biogeography and human effects in Plantago lanceolata. In: Kuiper PJC, Bos M (eds) Plantago: a multidisciplinary study, vol 89. Springer, Berlin, pp 5–6Google Scholar
  67. Van der Putten WH, de Ruiter PC, Bezemer TM, Harvey JA, Wassen M, Wolters V (2004) Trophic interactions in a changing world. Basic Appl Ecol 5:487–494CrossRefGoogle Scholar
  68. White TCR (1993) The inadequate environment: nitrogen and the abundance of animals. Springer, BerlinCrossRefGoogle Scholar
  69. Willems JH, van Nieuwstadt MGL (2009) Long-term after effects of fertilisation on above-ground phytomass and species diversity in calcareous grassland. J Veg Sci 7(2):177–184CrossRefGoogle Scholar
  70. Wu L, Antonovics J (1975) Experimental ecological genetics in plantago ll. Lead tolerance in Plantago lanceolata and Cynodon dactylon from a roadside. Ecology 57:205–208CrossRefGoogle Scholar
  71. Wurst S, Dugassa-Gobena D, Scheu S (2004) Earthworms and litter distribution affect plant-defensive chemistry. J Chem Ecol 30:691–701PubMedCrossRefGoogle Scholar
  72. Yarnes CT, Boecklen WJ (2006) Abiotic mosaics affect seasonal variation of plant resources and influence the performance and mortality of a leaf-miner in Gambel’s oak (Quercus gambelii, Nutt.). Ecol Res 21:157–163CrossRefGoogle Scholar
  73. Zeileis A, Kleiber C, Jackman S (2007) Regression models for count data in R. Research Report Series/Department of Statistics and Mathematics, 53. Department of Statistics and Mathematics, WU Vienna University of Economics and Business, ViennaGoogle Scholar
  74. Zuur AF, Ieno EN, Smith GM (2007) Analysing ecological data. Springer, New YorkGoogle Scholar
  75. Zuur AF, Leno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Christine Hancock
    • 1
  • Nicole Wäschke
    • 2
  • Uta Schumacher
    • 3
  • Karl Eduard Linsenmair
    • 1
  • Torsten Meiners
    • 2
  • Elisabeth Obermaier
    • 1
    • 4
  1. 1.Department of Animal Ecology and Tropical BiologyUniversity of WürzburgWürzburgGermany
  2. 2.Institute of Biology, Applied Zoology/Animal EcologyFreie Universität BerlinBerlinGermany
  3. 3.Institute of Biochemistry and Biology, Biodiversity Exploratory Schorfheide-ChorinUniversity of PotsdamAngermündeGermany
  4. 4.Ecological Botanical GardensUniversity of BayreuthBayreuthGermany

Personalised recommendations