Arthropod-Plant Interactions

, Volume 7, Issue 2, pp 217–224 | Cite as

Allocation of resources away from sites of herbivory under simultaneous attack by aboveground and belowground herbivores in the common milkweed, Asclepias syriaca

  • Leiling Tao
  • Mark D. Hunter
Original Paper


Following herbivory, plants can preferentially allocate newly acquired resources away from attacked sites as an important mechanism conferring tolerance. Although reported previously for both aboveground and belowground herbivores, it remains unclear whether plants can simultaneously allocate resources away from both kinds of herbivore attack, and whether they have interactive effects on plant resource allocation. In the current study, we used dual-isotopic techniques to compare the allocation of newly acquired carbon (C) and nitrogen (N) by the common milkweed Asclepias syriaca following attack by an aboveground herbivore, the monarch caterpillar Danaus plexippus and a belowground herbivore, larvae of the red milkweed beetle Tetraopes tetraophthalmus. Both species induced significant changes in the allocation of C and N in A. syriaca. Specifically, A. syriaca increased allocation of new N to stems at the expense of allocation to damaged tissues (i.e., leaf or root). When under simultaneous attack, the allocation of resources to stems was greater than that induced by either herbivore alone, suggesting that (1) the herbivores have additive effects on allocation patterns by A. syriaca and (2) A. syriaca was able to mitigate the effects of future attack by both herbivore species simultaneously.


Aboveground and belowground interactions Asclepias syriaca Carbon Danaus plexippus Herbivory Nitrogen Plant–herbivore interactions Plant–mediated interactions Plant tolerance Resource allocation 



This work was supported by a Block Grant and a Barbour Fellowship from the University of Michigan to L.T. and NSF DEB-0814340 to M.D.H. We gratefully acknowledge Rachel Vannette for assistance in greenhouse arrangements; Huijie Gan, Shan Gao, and Susan Kabat for their help with laboratory work. Comments from Ivette Perfecto, Knute Nadelhoffer, and especially Deborah Goldberg greatly improved an earlier version of the manuscript. We also thank Patricia Micks from the soil ecology lab at the University of Michigan for the chemical analyses. We also appreciate the helpful comments from two anonymous reviewers.


  1. Agrawal AA, Fishbein M (2008) Phylogenetic escalation and decline of plant defense strategies. Proc Natl Acad Sci 105(29):10057–10060. doi: 10.1073/pnas.0802368105 PubMedCrossRefGoogle Scholar
  2. Anten NPR, Pierik R (2010) Moving resources away from the herbivore: regulation and adaptive significance. New Phytol 188(3):643–645. doi: 10.1111/j.1469-8137.2010.03506.x PubMedCrossRefGoogle Scholar
  3. Arnold TM, Schultz JC (2002) Induced sink strength as a prerequisite for induced tannin biosynthesis in developing leaves of Populus. Oecologia 130(4):585–593. doi: 10.1007/s00442-001-0839-7 CrossRefGoogle Scholar
  4. Ayres E, Dromph KM, Cook R, Ostle N, Bardgett RD (2007) The influence of below-ground herbivory and defoliation of a legume on nitrogen transfer to neighbouring plants. Funct Ecol 21(2):256–263. doi: 10.1111/j.1365-2435.2006.01227.x CrossRefGoogle Scholar
  5. Babst BA, Ferrieri RA, Gray DW, Lerdau M, Schlyer DJ, Schueller M, Thorpe MR, Orians CM (2005) Jasmonic acid induces rapid changes in carbon transport and partitioning in Populus. New Phytol 167(1):63–72. doi: 10.1111/j.1469-8137.2005.01388.x PubMedCrossRefGoogle Scholar
  6. Baldwin IT, Schultz JC (1983) Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 221(4607):277–279. doi: 10.1126/science.221.4607.277 PubMedCrossRefGoogle Scholar
  7. Bezemer TM, van Dam NM (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20(11):617–624. doi: 10.1016/j.tree.2005.08.006 PubMedCrossRefGoogle Scholar
  8. Blossey B, Hunt-Joshi TR (2003) Belowground herbivory by insects: influence on plants and aboveground herbivores. Annu Rev Entomol 48(1):521–547. doi: 10.1146/annurev.ento.48.091801.112700 PubMedCrossRefGoogle Scholar
  9. Brattsten LB (1988) Enzymic adaptations in leaf-feeding insects to host-plant allelochemicals. J Chem Ecol 14(10):1919–1939. doi: 10.1007/bf01013486 CrossRefGoogle Scholar
  10. Chemsak JA (1963) Taxonomy and bionomics of the genus Tetraopes (Cerambycidae: Coleoptera) 30:1–90Google Scholar
  11. Fagerström T (1992) The meristem-meristem cycle as a basis for defining fitness in clonal plants. Oikos 63(3):449–453CrossRefGoogle Scholar
  12. Frost CJ, Hunter MD (2008) Herbivore-induced shifts in carbon and nitrogen allocation in red oak seedlings. New Phytol 178(4):835–845. doi: 10.1111/j.1469-8137.2008.02420.x PubMedCrossRefGoogle Scholar
  13. Gardiner LM (1961) A note on pviposition and larval habits of the milkweed beetle, Tetraopes tetraophthalmus Forst. (Coleoptera: Cerambycidae). The. Canadian Entomologist 93(8):678–679. doi: 10.4039/Ent93678-8 CrossRefGoogle Scholar
  14. Gómez S, Ferrieri RA, Schueller M, Orians CM (2010) Methyl jasmonate elicits rapid changes in carbon and nitrogen dynamics in tomato. New Phytol 188(3):835–844. doi: 10.1111/j.1469-8137.2010.03414.x PubMedCrossRefGoogle Scholar
  15. Gómez S, Steinbrenner AD, Osorio S, Schueller M, Ferrieri RA, Fernie AR, Orians CM (2012) From shoots to roots: transport and metabolic changes in tomato after simulated feeding by a specialist lepidopteran. Entomol Exp Appl 144(1):101–111. doi: 10.1111/j.1570-7458.2012.01268.x CrossRefGoogle Scholar
  16. Hochwender CG, Marquis RJ, Stowe KA (2000) The potential for and constraints on the evolution of compensatory ability in Asclepias syriaca. Oecologia 122(3):361–370. doi: 10.1007/s004420050042 CrossRefGoogle Scholar
  17. Holland JN, Cheng W, Crossley DA (1996) Herbivore-induced changes in plant carbon allocation: assessment of below-ground C fluxes using carbon-14. Oecologia 107(1):87–94. doi: 10.1007/bf00582238 CrossRefGoogle Scholar
  18. Hougen-Eitzman D, Rausher MD (1994) Interactions between herbivorous insects and plant-insect coevolution. Am Nat 143(4):677–697CrossRefGoogle Scholar
  19. Hunter MD (2001) Out of sight, out of mind: the impacts of root-feeding insects in natural and managed systems. Agric For Entomol 3(1):3–9. doi: 10.1046/j.1461-9563.2001.00083.x CrossRefGoogle Scholar
  20. Hunter MD (2008) Root herbivory in forest ecosystems. In: Johnson SN, Murray PJ (eds) Root feeders, an ecosystem perspective. CAB Biosciences, Ascot, UK, pp 68–95CrossRefGoogle Scholar
  21. Kaplan I, Halitschke R, Kessler A, Rehill BJ, Sardanelli S, Denno RF (2008) Physiological integration of roots and shoots in plant defense strategies links above- and belowground herbivory. Ecol Lett 11(8):841–851. doi: 10.1111/j.1461-0248.2008.01200.x PubMedCrossRefGoogle Scholar
  22. Karban R, Baldwin IT (1997) Induced responses to herbivory. The University of Chicago Press, ChicagoCrossRefGoogle Scholar
  23. Maron JL (1998) Insect herbivory above- and belowground: individual and joint effects on plant fitness. Ecology 79(4):1281–1293. doi: 10.1890/0012-9658(1998)079[1281:ihaabi];2 CrossRefGoogle Scholar
  24. Masters GJ, Brown VK, Gange AC (1993) Plant mediated interactions between aboveground and belowground insect herbivores. Oikos 66(1):148–151. doi: 10.2307/3545209 CrossRefGoogle Scholar
  25. Matter SF (2001) Effects of above and below ground herbivory by Tetraopes tetraophthalmus (Coleoptera: Cerambycidae) on the growth and reproduction of Asclepias syriaca (Asclepidacae). Environ Entomol 30(2):333–338. doi: 10.1603/0046-225x-30.2.333 CrossRefGoogle Scholar
  26. Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11(1):119–161. doi: 10.1146/ CrossRefGoogle Scholar
  27. Moreira X, Zas R, Sampedro L (2012) Genetic variation and phenotypic plasticity of nutrient re-allocation and increased fine root production as putative tolerance mechanisms inducible by methyl jasmonate in pine trees. J Ecol 100(3):810–820. doi: 10.1111/j.1365-2745.2011.01938.x CrossRefGoogle Scholar
  28. Newingham B, Callaway R, BassiriRad H (2007) Allocating nitrogen away from a herbivore: a novel compensatory response to root herbivory. Oecologia 153(4):913–920. doi: 10.1007/s00442-007-0791-2 PubMedCrossRefGoogle Scholar
  29. Orians C, Thorn A, Gómez S (2011) Herbivore-induced resource sequestration in plants: why bother? Oecologia 167(1):1–9. doi: 10.1007/s00442-011-1968-2 PubMedCrossRefGoogle Scholar
  30. Paterson E, Thornton B, Midwood AJ, Sim A (2005) Defoliation alters the relative contributions of recent and non-recent assimilate to root exudation from Festuca rubra. Plant, Cell Environ 28(12):1525–1533. doi: 10.1111/j.1365-3040.2005.01389.x CrossRefGoogle Scholar
  31. Rasmann S, Agrawal AA, Cook SC, Erwin AC (2009) Cardenolides, induced responses, and interactions between above- and belowground herbivores of milkweed (Asclepias spp.). Ecology 90(9):2393–2404. doi: 10.1890/08-1895.1 PubMedCrossRefGoogle Scholar
  32. R Development Core Team (2011) R: a language and environment for statistical computing, version 2.13.2. Vienna, Austria. Available at: Accessed 1 Oct 2011
  33. Rosenthal JP, Kotanen PM (1994) Terrestrial plant tolerance to herbivory. Trends Ecol Evol 9(4):145–148. doi: 10.1016/0169-5347(94)90180-5 PubMedCrossRefGoogle Scholar
  34. Schwachtje J, Minchin PEH, Jahnke S, van Dongen JT, Schittko U, Baldwin IT (2006) SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots. Proc Natl Acad Sci 103(34):12935–12940. doi: 10.1073/pnas.0602316103 PubMedCrossRefGoogle Scholar
  35. Soler R, Bezemer TM, Van Der Putten WH, Vet LEM, Harvey JA (2005) Root herbivore effects on above-ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. J Anim Ecol 74(6):1121–1130. doi: 10.1111/j.1365-2656.2005.01006.x CrossRefGoogle Scholar
  36. Tao L, Hunter MD (2011) Effects of insect herbivores on the nitrogen economy of plants. In: Polacco JC, Todd CD (eds) Ecological aspects of nitrogen metabolism in plants. Wiley-Blackwell, West Sussex, UK, pp 255–279. doi: 10.1002/9780470959404.ch12
  37. Tao L, Hunter MD (2012) Does anthropogenic nitrogen deposition induce phosphorus limitation in herbivorous insects? Glob Change Biol 18(6):1843–1853. doi: 10.1111/j.1365-2486.2012.02645.x CrossRefGoogle Scholar
  38. Wurst S, van der Putten WH (2007) Root herbivore identity matters in plant-mediated interactions between root and shoot herbivores. Basic Appl Ecol 8(6):491–499. doi: 10.1016/j.baae.2006.09.015 CrossRefGoogle Scholar
  39. Zalucki MP, Brower LP, Alonso-M A (2001) Detrimental effects of latex and cardiac glycosides on survival and growth of first-instar monarch butterfly larvae Danaus plexippus feeding on the sandhill milkweed Asclepias humistrata. Ecological Entomology 26(2):212–224. doi: 10.1046/j.1365-2311.2001.00313.x CrossRefGoogle Scholar
  40. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, New JerseyGoogle Scholar
  41. Zvereva E, Kozlov M (2012) Sources of variation in plant responses to belowground insect herbivory: a meta-analysis. Oecologia 169(2):441–452. doi: 10.1007/s00442-011-2210-y PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborUSA

Personalised recommendations