Arthropod-Plant Interactions

, Volume 6, Issue 3, pp 471–488 | Cite as

Egg adhesion of the codling moth Cydia pomonella L. (Lepidoptera, Tortricidae) to various substrates: I. Leaf surfaces of different apple cultivars

  • Loris Al Bitar
  • Stanislav N. Gorb
  • Claus P. W. Zebitz
  • Dagmar Voigt
Original Paper


Codling moths, Cydia pomonella L. (Lepidoptera, Tortricidae), of the first generation deposit eggs on apple leaves in the vicinity of small fruits. The choice of the suitable oviposition sites and proper fixation of eggs are expected to be crucial factors for the survival of the offspring. In this study, we investigated egg adhesion of the codling moth to leaf surfaces of different cultivars of the domestic apple, Malus domestica Borkh., by measuring the pull-off force required to detach the eggs from leaves. Since surface features may influence insect egg adhesion, morphological and physicochemical properties (wettability, free surface energy) of these leaf surfaces were analyzed. Furthermore, eggs and their adhesives covering leaf surfaces were visualized. Eggs on the smooth upper leaf surfaces of all tested cultivars required significantly similar pull-off forces to be detached, at a total average of 6.0 mN. Up to 2–3 times stronger pull-off forces had to be applied to detach eggs from trichome-covered lower leaves, and these forces differed significantly between cultivars. The role of leaf surface properties is discussed in the context of egg adhesion, oviposition site choice, female attachment, as well as neonate locomotion speed and survival. The obtained results shed light on the susceptibility of various apple cultivars and leaf surfaces to the infestation of apple trees by first-generation codling moths.


Adhesion Free surface energy Insect egg Malus domestica Oviposition Plant surface 



The first author is grateful to Martin Hofmeister (Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany) for his valuable help in graphs and Fig. 1. This study was supported by a PhD grant from Syria to LAB and by the Federal Ministry of Education and Research, Germany (BMBF, project BIONA 01RB0802A) to SNG.


  1. Aghdam HR, Fathipour Y, Radjabi G, Rezapanah M (2009) Temperature-dependent development and temperature thresholds of codling moth (Lepidoptera: Tortricidae) in Iran. Environ Entomol 38:885–895PubMedCrossRefGoogle Scholar
  2. Al Bitar L, Voigt D, Zebitz CPW, Gorb SN (2009) Tarsal morphology and attachment ability of the codling moth Cydia pomonella L. (Lepidoptera, Tortricidae) to smooth surfaces. J Insect Physiol 55:1029–1038PubMedCrossRefGoogle Scholar
  3. Al Bitar L, Voigt D, Zebitz CPW, Gorb SN (2010) Attachment ability of the codling moth Cydia pomonella L. to rough substrates. J Insect Physiol 56:1966–1972PubMedCrossRefGoogle Scholar
  4. Amornsak W, Noda T, Yamashita O (1992) Accumulation of glue proteins in the developing colleterial glands of the silkworm, Bombyx mori. J Seric Sci Jpn 61:123–130Google Scholar
  5. Barnes MM (1991) Codling moth occurrence, host race formation, and damage. In: Van der Geest LPS, Evenhuis HH (eds) Tortricid pests: their biology, natural enemies and control. Elsevier, Amsterdam, pp 313–327Google Scholar
  6. Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H (1998) Classification and terminology of plant epicuticular waxes. Bot J Linn Soc 126:237–260CrossRefGoogle Scholar
  7. Bathon H, Singh P, Clare GK (1991) Rearing methods. In: van der Geest LPS, Evenhuis HH (eds) Tortricid pests: their biology, natural enemies and control. Elsevier, Amsterdam, pp 283–293Google Scholar
  8. Beament JWL, Lal R (1957) Penetration through the egg-shell of Pieris brassicae (L.). Bull Entomol Res 48:109–125CrossRefGoogle Scholar
  9. Beattie GA, Marcell LM (2002) Effect of alterations in cuticular wax biosynthesis on the physicochemical properties and topography of maize leaf surfaces. Plant, Cell Environ 25:1–16CrossRefGoogle Scholar
  10. Betz O (2010) Adhesive exocrine glands in insects: morphology, ultrastructure, and adhesive secretion. In: Byern J, Grunwald I (eds) Biological adhesive systems from nature to technical and medical application. Springer, Wien, pp 111–152Google Scholar
  11. Blomefield TL, Giliomee JH (2009) Development rates of the embryonic and immature stages of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), at constant and fluctuating temperatures. Afr Entomol 17:183–191CrossRefGoogle Scholar
  12. Blomefield TL, Pringle KL, Sadie A (1997) Field observations on oviposition of codling moth, Cydia pomonella (Linnaeus) (Lepidoptera: Olethreutidae), in an unsprayed apple orchard in South Africa. Afr Entomol 5:319–336Google Scholar
  13. Bohn HF, Federle W (2004) Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc Natl Acad Sci USA 101:14138–14143PubMedCrossRefGoogle Scholar
  14. Borchert DM, Stinner RE, Walgenbach JF, Kennedy GG (2004) Oriental fruit moth (Lepidoptera: Tortricidae) phenology and management with methoxyfenozide in North Carolina apples. J Econ Entomol 97:1353–1364PubMedCrossRefGoogle Scholar
  15. Borden AD (1931) Some field observations on codling moth behavior. J Econ Entomol 24:1137–1145Google Scholar
  16. Burgess IF (2010) Do nit removal formulations and other treatments loosen head louse eggs and nits from hair? Med Vet Entomol 24:55–61PubMedCrossRefGoogle Scholar
  17. Burkhart CN, Stankiewicz BA, Pchalek I, Kruge MA, Burkhart CG (1999) Molecular composition of the louse sheath. J Parasitol 85:559–561PubMedCrossRefGoogle Scholar
  18. Busscher HJ, van Pelt AWJ, de Jong HP, Arends J (1984) The effect of the surface roughening of polymers on measured contact angle of liquids. Colloids Surf 9:319–331CrossRefGoogle Scholar
  19. Cogley TP, Cogley MC (1989) Morphology of the eggs of the human bot fly, Dermatobia hominis (L. Jr.) (Diptera: Cuterebridae) and their adherence to the transport carrier. Int J Insect Morphol Embryol 18:239–248CrossRefGoogle Scholar
  20. Cogley TP, Anderson JR, Weintraub J (1981) Ultrastructure and function of the attachment organ of warble fly eggs (Diptera: Oestridae: Hypodermatinae). Int J Insect Morphol Embryol 10:7–18CrossRefGoogle Scholar
  21. Crossley A, Fowler D (1986) The weathering of scots pine epicuticular wax in polluted and clean air. New Phytol 103:207–218CrossRefGoogle Scholar
  22. Curtis CE, Tebbets JS, Clark JD (1990) Ovipositional behavior of the codling moth (Lepidoptera: Tortricidae) on stone fruits in the field and an improved oviposition cage for use in the laboratory. J Econ Entomol 83:131–134Google Scholar
  23. Doss RP, Oliver JE, Proebsting WM, Potter SW, Kuy S, Clement SL, Williamson RT, Carney JR, DeVilbiss ED (2000) Bruchins: insect-derived plant regulators that stimulate neoplasm formation. Proc Natl Acad Sci USA 97:6218–6223PubMedCrossRefGoogle Scholar
  24. Erbil HY (1997) Surface tension of polymers. In: Birdi KS (ed) CRC Handbook of surfaces and colloid chemistry. CRC Press Inc., Boca Raton, pp 265–312Google Scholar
  25. Fehrenbach H, Dittrich V, Zissler D (1987) Eggshell fine structure of three lepidopteran pests: Cydia pomonella (L.) (Tortricidae), Heliothis virescens (Fabr.), and Spodoptera littoralis (Boisd.) (Noctuidae). Int J Insect Morphol Embryol 16:201–219CrossRefGoogle Scholar
  26. Fordyce JA, Nice CC (2003) Variation in butterfly egg adhesion: adaptation to local host plant senescence characteristics? Ecol Lett 6:23–27CrossRefGoogle Scholar
  27. Forister ML, Fordyce JA, Nice CC, Compert Z, Shapiro AM (2006) Egg morphology varies among populations and habitats along a suture zone in the Lycaeides idas-melissa species complex (Lepidoptera: Lycaenidae). Ann Entomol Soc Am 99:933–937CrossRefGoogle Scholar
  28. Gaino E, Rebora M (2001) Synthesis and function of the fibrous layers covering the eggs of Siphlonurus lacustris (Ephemeroptera, Siphlonuridae). Acta Zool 82:41–48CrossRefGoogle Scholar
  29. Geier PW (1963) The life history of codling moth Cydia pomonella (L.) (Lepidoptera: Tortricidae) in the Australian Capital Territory. Aust J Zool 11:323–367CrossRefGoogle Scholar
  30. Gorb EV, Gorb SN (2006) Physicochemical properties of functional surfaces in pitchers of the carnivorous plant Nepenthes alata Blanco (Nepenthaceae). Plant Biol 8:841–848PubMedCrossRefGoogle Scholar
  31. Gorb EV, Gorb SN (2009) Effect of surface topography and chemistry of Rumex obtusifolius leaves on the attachment of the beetle Gastrophysa viridula. Entomol Exp Appl 130:222–228CrossRefGoogle Scholar
  32. Gorb E, Kastner V, Peressadko A, Arzt E, Gaume L, Rowe N, Gorb S (2004) Structure and properties of the glandular surface in the digestive zone of the pitcher in the carnivorous plant Nepenthes ventrata and its role in insect trapping and retention. J Exp Biol 207:2947–2963PubMedCrossRefGoogle Scholar
  33. Gorb E, Voigt D, Eigenbrode SD, Gorb S (2008) Attachment force of the beetle Cryptolaemus montrouzieri (Coleoptera, Coccinellidae) on leaflet surfaces of mutants of the pea Pisum sativum (Fabaceae) with regular and reduced wax coverage. Arthropod-Plant Interact 2:247–259CrossRefGoogle Scholar
  34. Graf B, Höpli HU, Höhn H (1992) Einfluss der Sortenwahl auf Schädlingsbefall und Raubmilbenbesatz im Apfelanbau. Schweiz Z Obst-Weinbau 128:618–622Google Scholar
  35. Habenicht G (2002) Kleben: Grundlagen, Technologien, Anwendung, 4th edn. Springer, BerlinGoogle Scholar
  36. Hagley EAC, Bronskill JF, Ford EJ (1980) Effect of the physical nature of leaf and fruit surfaces on oviposition by the codling moth, Cydia pomonella (Lepidoptera: Tortricidae). Can Entomol 112:503–510CrossRefGoogle Scholar
  37. Hilker M, Meiners T (2002) Induction of plant responses towards oviposition and feeding of herbivorous arthropods: a comparison. Entomol Exp Appl 104:181–192CrossRefGoogle Scholar
  38. Hilker M, Meiners T (2006) Early herbivore alert: insect eggs induce plant defense. J Chem Ecol 32:1379–1397PubMedCrossRefGoogle Scholar
  39. Hinton HE (1981) Biology of insect eggs, vol I–III. Pergamon Press, OxfordGoogle Scholar
  40. Holloway PJ (1967) Studies on the wettability of leaf surfaces. PhD Thesis, University of LondonGoogle Scholar
  41. Hunsche M, Blanke MM, Noga G (2010) Does the microclimate under hail nets influence micromorphological characteristics of apple leaves and cuticles? J Plant Physiol 167:974–980PubMedCrossRefGoogle Scholar
  42. Israelachvili J (1992) Intermolecular and surface forces. Academic Press, LondonGoogle Scholar
  43. Jackson DM (1979) Codling moth egg distribution on unmanaged apple trees. Ann Entomol Soc Am 72:361–368Google Scholar
  44. Jackson DM (1982) Searching behavior and survival of 1st-instar codling moths. Ann Entomol Soc Am 75:284–289Google Scholar
  45. Jackson DM, Hardwood RE (1980) Survival potential of first instars of the codling moth in laboratory experiments. Ann Entomol Soc Am 73:160–163Google Scholar
  46. Jeffree CE (1986) The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution. In: Juniper BE, Southwood SR (eds) Insects and the plant surface. Edward Arnold Publishers, London, pp 23–64Google Scholar
  47. Jin Y, Chen YL, Jiang Y, Xu M (2006) Proteome analysis of the silkworm (Bombyx mori L.) colleterial gland during different development stages. Arch Insect Biochem Physiol 61:42–50PubMedCrossRefGoogle Scholar
  48. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A 324:301–313CrossRefGoogle Scholar
  49. Koch K, Bhushan B, Barthlott W (2008) Diversity of structure, morphology and wetting of plant surfaces. Soft Matter 4:1943–1963CrossRefGoogle Scholar
  50. Li D, Huson MG, Graham LD (2008) Proteinaceous adhesive secretions from insects, and in particular the egg attachment glue of Opodiphthera sp. moths. Arch Insect Biochem Physiol 69:85–105PubMedCrossRefGoogle Scholar
  51. Meier U, Graf H, Hack H, Hess M, Kennel W, Klose R, Mappes D, Seipp D, Stauss R, Streif J, van den Boom T (1994) Phänologische Entwicklungsstadien des Kernobstes (Malus domstica Borkh. und Pyrus communis L.) des Steinobstes (Prunus-Arten), der Johannisbeere (Ribes-Arten) und der Erdbeere (Fragaria x ananassa Duch.). Nachrichtenbl Deut Pflanzenschutzd 46:141–153Google Scholar
  52. Müller C, Riederer M (2005) Plant surface properties in chemical ecology. J Chem Ecol 31:2621–2651PubMedCrossRefGoogle Scholar
  53. Nickles EP, Ghiradella H, Bakhru H, Haberl A (2002) Egg of the karner blue butterfly (Lycaeides melissa samuelis): morphology and elemental analysis. J Morphol 251:140–148PubMedCrossRefGoogle Scholar
  54. Olson WH (1977) Walnut varieties differ in susceptibility to codling moth damage. Calif Agric 31:14–15Google Scholar
  55. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747CrossRefGoogle Scholar
  56. Plourde DF, Goonewardene HF, Kwolek WF (1985) Pubescence as a factor in codling moth oviposition and fruit entry in five apple selections. HortScience 20:82–83Google Scholar
  57. Ramaswamy SB (1988) Host finding by moths: sensory modalities and behaviours. J Insect Physiol 34:235–249CrossRefGoogle Scholar
  58. Ramaswamy SB, Ma WK, Baker GT (1987) Sensory cues and receptors for oviposition by Heliothis virescens. Entomol Exp Appl 43:159–168CrossRefGoogle Scholar
  59. Renwick JAA (1989) Chemical ecology of oviposition in phytophagous insects. Experientia 45:223–228CrossRefGoogle Scholar
  60. Renwick JAA, Chew FS (1994) Oviposition behavior in Lepidoptera. Annu Rev Entomol 39:377–400CrossRefGoogle Scholar
  61. Riley RC, Forgash AJ (1967) Drosophila melanogaster eggshell adhesive. J Insect Physiol 13:509–517PubMedCrossRefGoogle Scholar
  62. Scherge M, Gorb S (2001) Biological micro- and nano-tribology. Springer, BerlinGoogle Scholar
  63. Singer MC, Ng D, Thomas CD (1988) Heritability of oviposition preference and its relationship to offspring performance within a single insect population. Evolution 42:977–985CrossRefGoogle Scholar
  64. Subinprasert S, Svensson BW (1988) Effects of predation on clutch size and egg dispersion in the codling moth Laspeyresia pomonella. Ecol Entomol 13:87–94CrossRefGoogle Scholar
  65. Thompson JN (1988) Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol Exp Appl 47:3–14CrossRefGoogle Scholar
  66. Uehara K, Sakurai M (2002) Bonding strength of adhesives and surface roughness of joined parts. J Mater Process Technol 127:178–181CrossRefGoogle Scholar
  67. Unruh TR, Knight AL, Upton J, Glenn DM, Puterka GJ (2000) Particle films for suppression of the codling moth (Lepidoptera: Tortricidae) in apple and pear orchards. J Econ Entomol 93:737–743PubMedCrossRefGoogle Scholar
  68. Voigt D, Gorb S (2010) Egg attachment of the asparagus beetle Crioceris asparagi to the crystalline waxy surface of Asparagus officinalis. Proc R Soc Lond B 277:895–903CrossRefGoogle Scholar
  69. Wood TG (1965) Field observations on flight and oviposition of codling moth (Carpocapsa pomonella L.) and mortality of eggs and first-instar larvae in an integrated control orchard. N Z J Agric Res 8:1043–1059CrossRefGoogle Scholar
  70. Yago M, Mitamura T, Abe S, Hashimoto S (2001) Adhesive strength of glue-like substances from the colleterial glands of Antheraea yamamai and Rhodinia fugax. Int J Wild Silkmoths Silk 6:11–15Google Scholar
  71. Yan F, Bengtsson M, Witzgall P (1999) Behavioral response of female codling moths, Cydia pomonella, to apple volatiles. J Chem Ecol 25:1343–1351CrossRefGoogle Scholar
  72. Yokoyama VY, Miller GT, Hartsell PL (1990) Evaluation of a methyl bromide quarantine treatment to control codling moth (Lepidoptera: Tortricidae) on nectarine cultivars proposed for export to Japan. J Econ Entomol 83:466–471Google Scholar
  73. Yoshida K, Nagata M (1997) Adhesive strength of the glue substances in the colleterial glands of the silkmoth, Bombyx mori. J Seric Sci Jpn 66:453–456Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Loris Al Bitar
    • 1
  • Stanislav N. Gorb
    • 2
    • 3
  • Claus P. W. Zebitz
    • 1
  • Dagmar Voigt
    • 2
    • 3
  1. 1.Institute of PhytomedicineUniversity of HohenheimStuttgartGermany
  2. 2.Evolutionary Biomaterials Group, Department of Thin Films and Biological SystemsMax Planck Institute for Metals ResearchStuttgartGermany
  3. 3.Functional Morphology and Biomechanics, Zoological InstituteChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations