Arthropod-Plant Interactions

, Volume 6, Issue 3, pp 417–424

A leaf-rolling weevil benefits from general saprophytic fungi in polysaccharide degradation

Original Paper

Abstract

Insects, especially those feeding on leaf litter, widely form symbiosis with fungi. As dead plant tissues provide insects with poor-quality diets, which contain relatively high levels of indigestible lignin and cellulose, some saprophytic fungi may increase nutrient availability by polysaccharide degradation. Although the inherited, obligate bacterial symbionts are well documented, the non-inherited, facultative fungal symbionts are relatively overlooked. Females of the leaf-rolling weevil Heterapoderopsis bicallosicollis, a specialist of Triadica sebifera, construct leaf-rolls that serve as retreats from which larvae feed internally. We found that fungi associated with leaf-rolls were not transported by the female, but likely originated from the soil. To determine the effects of fungi on H. bicallosicollis development, fungal growth was reduced by a dry treatment. This treatment decreased adult weight and survival, and prolonged larval duration significantly. We further tested the hypothesis that fungi degrade leaf-roll polysaccharides, by a fungus inoculation experiment. Three dominant fungi (Penicillium sp., Aspergillus sp. and Cladosporium sp.) decreased the levels of soluble carbohydrate, cellulose, and lignin in inoculation experiments. Soluble carbohydrate, cellulose, and lignin of leaf-rolls all were found to decrease gradually during insect development. We conclude that these saprophytic fungi form facultative associations with H. bicallosicollis and benefit weevil nutrition by polysaccharide decomposition. Our study highlights the significance of fungal symbionts in insect nutritional ecology.

Keywords

Attelabidae Carbohydrate Cellulose Chinese tallow Fungi Heterapoderopsis bicallosicollis Lignin Polysaccharide Symbiosis Triadica sebifera 

References

  1. Aanen DK, Eggleton P, Rouland-Lefèvre C, Guldberg-Frøslev T, Rosendahl S, Boomsma JJ (2002) The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc Natl Acad Sci USA 99(23):14887–14892PubMedCrossRefGoogle Scholar
  2. Ayres MP, Wilkens RT, Ruel JJ, Lombardero MJ, Vallery E (2000) Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology 81(8):2198–2210CrossRefGoogle Scholar
  3. Batra L, Batra S (1979) Termite-fungus mutualism. In: Betra L (ed) Insect-fungus symbiosis: mutualism and commensalism. Allaheld & Osmun, Montclair, pp 117–163Google Scholar
  4. Beaver R (1989) Insect-fungus relationships in the bark and ambrosia beetles. In: Wilding N, Collins N, Hammond P, Webber J (eds) Insect-fungus interactions. Academic Press, London, pp 121–143Google Scholar
  5. Bruce K, Cameron G, Harcombe P, Jubinsky G (1998) Introduction, impact on native habitats, and management of a woody invader, the Chinese tallow tree, Sapium sebiferum (L.) Roxb. Nat Areas J 17(3):255–260Google Scholar
  6. Damman H (1987) Leaf quality and enemy avoidance by the larvae of a pyralid moth. Ecology 68(1):88–97CrossRefGoogle Scholar
  7. Douglas AE (1989) Mycetocyte symbiosis in insects. Biol Rev Camb Philos Soc 64(4):409–434PubMedCrossRefGoogle Scholar
  8. Douglas AE (2009) The microbial dimension in insect nutritional ecology. Funct Ecol 23(1):38–47CrossRefGoogle Scholar
  9. Dreywood R (1946) Qualitative test for carbohydrate material. Ind Eng Chem Anal Ed 18(8):499CrossRefGoogle Scholar
  10. Effland M (1977) Modified procedure to determine acid-insoluble lignin in wood and pulp. Tappi 60(10):143–144Google Scholar
  11. Ezeonu I, Noble J, Simmons R, Price D, Crow S, Ahearn D (1994) Effect of relative humidity on fungal colonization of fiberglass insulation. Appl Environ Microbiol 60(6):2149–2151PubMedGoogle Scholar
  12. Gibson CM, Hunter MS (2010) Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol Lett 13(2):223–234PubMedCrossRefGoogle Scholar
  13. Grassé P, Noirot C (1958) Le meule des termites champignonnistes et sa signification symbiotique. Ann Sci Nat Zool Biol Anim 20(11):113–128Google Scholar
  14. Grebebbikov VV, Leschen RAB (2010) External exoskeletal cavities in Coleoptera and their possible mycangial functions. Entomol Sci 13(1):81–98CrossRefGoogle Scholar
  15. Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218CrossRefGoogle Scholar
  16. Heath JJ, Stireman JO III (2010) Dissecting the association between a gall midge, Asteromyia carbonifera, and its symbiotic fungus, Botryosphaeria dothidea. Entomol Exp Appl 137(1):36–49CrossRefGoogle Scholar
  17. Holloway B (1982) Anthribidae (Insecta: Coleoptera), vol. 3. Fauna of New Zealand Science Information Division, DSIR, Wellington, NZGoogle Scholar
  18. Hyodo F, Inoue T, Azuma J, Tayasu I, Abe T (2000) Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biol Biochem 32(5):653–658CrossRefGoogle Scholar
  19. Jubinsky G, Anderson LC (1996) The invasive potential of Chinese tallow-tree (Sapium sebiferum Roxb.) in the Southeast. Castanea 61(3):226–231Google Scholar
  20. Kobayashi C, Fukasawa Y, Hirose D, Kato M (2008) Contribution of symbiotic mycangial fungi to larval nutrition of a leaf-rolling weevil. Evol Ecol 22(6):711–722Google Scholar
  21. Legalov A (2003) Taxonomy, Classification, and Phylogeny of Rhynchitids and Leaf-rolling Weevils (Coleoptera: Rhynchitidae, Attelabidae) of the World Fauna, vol. 733 + 350 (641 Mb). NovosibirskGoogle Scholar
  22. Martin M, Martin J (1978) Cellulose digestion in the midgut of the fungus-growing termite Macrotermes natalensis: the role of acquired digestive enzymes. Science 199(4336):1453–1455PubMedCrossRefGoogle Scholar
  23. Martin M, Jones C, Bernays E (1991) The evolution of cellulose digestion in insects. Philos Trans R Soc Lond B Biol Sci 333(1267):281–288CrossRefGoogle Scholar
  24. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190PubMedCrossRefGoogle Scholar
  25. Mueller U (2002) Ant versus fungus versus mutualism: ant-cultivar conflict and the deconstruction of the attine ant-fungus symbiosis. Am Nat 160(4):67–98CrossRefGoogle Scholar
  26. Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61(1):1–9PubMedGoogle Scholar
  27. Osono T (2005) Colonization and succession of fungi during decomposition of Swida controversa leaf litter. Mycologia 97(3):589–597PubMedCrossRefGoogle Scholar
  28. Paine T, Raffa K, Harrington T (1997) Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu Rev Entomol 42(1):179–206PubMedCrossRefGoogle Scholar
  29. Richard F, Mora P, Errard C, Rouland C (2005) Digestive capacities of leaf-cutting ants and the contribution of their fungal cultivar to the degradation of plant material. J Comp Physiol B Biochem Syst Environ Physiol 175(5):297–303CrossRefGoogle Scholar
  30. Rohlfs M, Kürschner L (2010) Saprophagous insect larvae, Drosophila melanogaster, profit from increased species richness in beneficial microbes. J Appl Entomol 134(8):667–671Google Scholar
  31. Rouland-Lefèvre C, Inoue T, Johjima T (2006) Termitomyces/termite interactions. In: König H (ed) Soil biology, Intestinal microorganisms of termites and other invertebrates, vol 6. Springer, Berlin, pp 335–350CrossRefGoogle Scholar
  32. Sakurai K (1985) An attelabid weevil (Euops splendida) cultivates fungi. J Ethol 3(2):151–156CrossRefGoogle Scholar
  33. Singh K (1991) An illustrated manual on identification of some seed-borne Aspergilli, Fusaria, Penicillia and their mycotoxins. Danish Government Institute of Seed Pathology for Developing Countries, HellerupGoogle Scholar
  34. Teng N, Wang J, Chen T, Wu X, Wang Y, Lin J (2006) Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol 172(1):92–103PubMedCrossRefGoogle Scholar
  35. Tokuda M, Maryana N, Yukawa J (2001) Leaf-rolling site preference by Cycnotrachelus roelofsi (Coleoptera: Attelabidae). Entomol Sci 4(2):229–237Google Scholar
  36. Updegraff D (1969) Semimicro determination of cellulose inbiological materials. Anal Biochem 32(3):420–424PubMedCrossRefGoogle Scholar
  37. Wang Y, Ding J, Wheeler G, Purcell M, Zhang G (2009) Heterapoderopsis bicallosicollis (Coleoptera: Attelabidae): a potential biological control agent for Triadica sebifera. Environ Entomol 38(4):1135–1144PubMedCrossRefGoogle Scholar
  38. Wang Y, Wu K, Ding J (2010) Host specificity of Euops chinesis, a potential biological control agent of Fallopia japonica, an invasive plant in Europe and North America. Biocontrol 55(4):551–559CrossRefGoogle Scholar
  39. Watanabe T (2002) Pictorial atlas of soil and seed fungi: Morphologies of cultured fungi and key to species. Lewis Publishers, Boca RatonCrossRefGoogle Scholar
  40. Watanabe H, Noda H, Tokuda G, Lo N (1998) A cellulase gene of termite origin. Nature 394(6691):330–331PubMedCrossRefGoogle Scholar
  41. Zheng H, Wu Y, Ding J, Binion D, Fu W, Reardon R (2004) Invasive plants of Asian origin established in the United States and their natural enemies. US Department of Agriculture, Forest Service, Forest Health Technology Enterprise TeamGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Xiaoqiong Li
    • 1
    • 2
  • Gregory S. Wheeler
    • 3
  • Jianqing Ding
    • 1
  1. 1.Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical Garden/InstituteChinese Academy of ScienceWuhanChina
  2. 2.Graduate School of Chinese Academy of SciencesBeijingChina
  3. 3.Invasive Plant Research LaboratoryUSDA/ARSFort LauderdaleUSA

Personalised recommendations