Arthropod-Plant Interactions

, 5:219 | Cite as

Cardenolides from Gomphocarpus sinaicus and Pergularia tomentosa (Apocynaceae: Asclepiadoideae) deter the feeding of Spodoptera littoralis

  • Paul W. C. GreenEmail author
  • Nigel C. Veitch
  • Philip C. Stevenson
  • Monique S. J. Simmonds
Original Paper


Methanol extracts of Gomphocarpus sinaicus, Pergularia tomentosa and Cynanchum acutum (Apocynaceae, sub-family Asclepiadoideae) deterred feeding of Spodoptera littoralis in a binary-choice bioassay. Analyses of extracts using high-performance liquid chromatography with photodiode array detection indicated that methanol extracts of P. tomentosa and G. sinaicus contained cardenolides, while these compounds were not detected in extracts of C. acutum. Activity-guided fractionation of the methanol extracts of G. sinaicus and P. tomentosa resulted in the isolation of six cardenolides: 7,8-dehydrocalotropin, calotropin and coroglaucigenin 3-(6-deoxy-β-allopyranoside)-19-acetate (frugoside 19-acetate) from G. sinaicus, and coroglaucigenin, 16α-acetoxycalotropin and calactin from P. tomentosa. The isolation of 16α-acetoxycalotropin was a new report from P. tomentosa. Each of the 6 cardenolides deterred feeding by S. littoralis, while two cardenolide standards, digoxin and digitoxin, did not affect feeding. Differences among cardenolides in their effect on feeding were associated with specific structural features. C. acutum is the only one of the three species tested that is known to support the development of S. littoralis, although the development of larvae was delayed. The observed feeding deterrent activity of the cardenolide-free methanol extract of C. acutum would suggest that compounds other than cardenolides are responsible for the deterrent activity. These compounds, although deterrent in a short-term feeding assay, might not prevent long term feeding, thus allowing the larvae to develop on the plant.


Calactin Calotropin Coroglaucigenin Cynanchum Gomphocarpus Pergularia Feeding deterrence Spodoptera Apocynaceae Asclepiadoideae 



Bioassays using S. littoralis were carried out under a Defra licence issued to Kew under the Plant Health (England) Order 2005. We are grateful to Dr. Samia Heneidak for supplying the plant material to Dr. Geoffrey Kite for the LC–MS Orbitrap analyses and to Dr. Reneé Grayer for help with interpreting HPLC chromatograms. Martha Boalch, Lilla D`Costa, Peter Elliott, Aline Horwath, John Lees, and Dr Tom Prescott are thanked for technical assistance.


  1. Abdel-Azim NS (1998) A cardenolide glycoside from Gomphocarpus sinaicus. Phytochemistry 49:273–275CrossRefGoogle Scholar
  2. Abdel-Azim NS, Hammouda FM, Hunkler D, Rimpler H (1996) Re-investigation of the cardenolide glycosides from Gomphocarpus sinaicus. Phytochemistry 42:523–529CrossRefGoogle Scholar
  3. Akhtar Y, Isman MB (2004a) Comparative growth inhibitory and antifeedant effects of plant extracts and pure allelochemicals on four phytophagous insect species. J Appl Entomol 128:32–38CrossRefGoogle Scholar
  4. Akhtar Y, Isman MB (2004b) Generalization of a habituated feeding deterrent response to unrelated antifeedants following prolonged exposure in a generalist herbivore, Trichoplusia ni. J Chem Ecol 30:1349–1362PubMedCrossRefGoogle Scholar
  5. Akhtar Y, Rankin CH, Isman MB (2003) Decreased response to feeding deterrents following prolonged exposure in the larvae of a generalist herbivore, Trichoplusia ni (Lepidoptera: Noctuidae). J Insect Behav 16:811–831CrossRefGoogle Scholar
  6. Begum S, Siddiqui BS, Sultana R, Zia A, Suria A (1999) Bio-active cardenolides from the leaves of Nerium oleander. Phytochemistry 50:435–438PubMedCrossRefGoogle Scholar
  7. Bernays EA, Chapman RF (1996) Host Plant Selection by Phytophagous Insects. Chapman and Hall, New YorkGoogle Scholar
  8. Broza M, Sneh B (1980) Cynanchum acutum L. (Asclepiadaceae) as host for Egyptian cotton leaf worm, Spodoptera littoralis (Boisd.). J Appl Entomol 90:526–529Google Scholar
  9. Chen RF, Abe F, Yamauchi T, Taki M (1987) Cardenolide glycosides of Strophanthus divaricatus. Phytochemistry 26:2351–2355CrossRefGoogle Scholar
  10. Cheung HTA, Nelson CJ, Watson TR (1989) New cardenolide glycosides with doubly linked sugars from Asclepias vestita. J Chem Res Synop:6–7Google Scholar
  11. Dussourd DE, Hoyle AM (2000) Poisoned plusiines: toxicity of milkweed latex and cardenolides to some generalist caterpillars. Chemoecology 10:11–16CrossRefGoogle Scholar
  12. El-Askary H, Hölzl J, Hilal S, El-Kashoury E-S (1993) Cardenolide glycosides with doubly linked sugars from Gomphocarpus sinaicus. Phytochemistry 34:1399–1402CrossRefGoogle Scholar
  13. El-Askary H, Hölzl J, Hilal S, El-Kashoury E-S (1995a) A comparative study of the cardenolide content of different organs of Gomphocarpus sinaicus. Phytochemistry 38:1181–1184CrossRefGoogle Scholar
  14. El-Askary H, Hölzl J, Hilal S, El-Kashoury E-S (1995b) Cardenolide glycosides from Gomphocarpus sinaicus. Phytochemistry 38:943–946CrossRefGoogle Scholar
  15. Fawzy GA, Abdallah HM, Marzouk MSA, Soliman FM, Sleem AA (2008) Antidiabetic and antioxidant activities of major flavonoids of Cynanchum acutum L. (Asclepiadaceae) growing in Egypt. Z. Naturforsch C 63:658–662Google Scholar
  16. Fukuyama Y, Ochi M, Kasai H, Kodama M (1993) Insect growth inhibitory cardenolide glycosides from Anodendron affine. Phytochemistry 32:297–301CrossRefGoogle Scholar
  17. Gohar AA, El-Olemy MM, Abdel-Sattar E, El-Said M, Niwa M (2000) Cardenolides and ß-sitosterol glucoside from Pergularia tomentosa L. Nat Prod Sci 6:142–146Google Scholar
  18. Hamed AI, Plaza A, Balestrieri ML, Mahalel UA, Springuel IV, Oleszek W, Pizza C, Piacente S (2006) Cardenolide glycosides from Pergularia tomentosa and their proapoptotic activity in Kaposi’s sarcoma cells. J Nat Prod 69:1319–1322PubMedCrossRefGoogle Scholar
  19. Helmus MR, Dussourd DE (2004) Glues or poisons: which triggers vein cutting by monarch caterpillars. Chemoecology 15:45–49CrossRefGoogle Scholar
  20. Heneidak S, Grayer RJ, Kite GC, Simmonds MSJ (2006) Flavonoid glycosides from Egyptian species of the tribe Asclepiadeae (Apocynaceae, subfamily Asclepiadoideae). Biochem Syst Ecol 34:575–584CrossRefGoogle Scholar
  21. Huang X, Renwick JAA (1994) Cardenolides as oviposition deterrents to two Pieris species: structure-activity relationships. J Chem Ecol 20:1039–1051CrossRefGoogle Scholar
  22. Huang XP, Renwick JAA (1995) Cross habituation to feeding deterrents and acceptance of a marginal host plant by Pieris rapae larvae. Entomol Exp Appl 76:295–302CrossRefGoogle Scholar
  23. Huang X, Renwick JAA, Sachdev-Gupta K (1993) A chemical basis for differential acceptance of Erysimum cheiranthoides by two Pieris species. J Chem Ecol 19:195–210CrossRefGoogle Scholar
  24. Jolad SD, Bates RB, Cole JR, Hoffmann JJ, Siahann TJ, Timmermann BN (1986) Cardenolides and a lignan from Asclepias subulata. Phytochemistry 25:2581–2590CrossRefGoogle Scholar
  25. Malcolm SB (1991) Cardenolide mediated interactions between plants and herbivores. In: Rosenthal GA, Berenbaum MA (eds) Herbivores: Their interactions with secondary plant metabolites. The Chemical Participants, vol 1. Academic Press, San Diego, pp 251–296Google Scholar
  26. Martel JW, Malcolm SB (2004) Density dependent reduction and induction of milkweed cardenolides by a sucking insect herbivore. J Chem Ecol 30:545–561PubMedCrossRefGoogle Scholar
  27. Mohamed MA, Ahamed WS, El-Said MM, Hayen H (2008) New acylated flavonol diglycosides of Cynanchum acutum. Nat Prod Commun 3:193–198Google Scholar
  28. Moore LV, Scudder GGE (1985) Selective sequestration of milkweed (Asclepias sp.) cardenolides in Oncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae). J Chem Ecol 5:667–687CrossRefGoogle Scholar
  29. Pauli GF, Fröhlich R (2000) Chiral key positions in Uzara steroids. Phytochem. Anal. 11:79–89CrossRefGoogle Scholar
  30. Piacente S, Masullo M, De Neve N, Dewelle J, Hamed A, Kiss R, Mijatovic T (2009) Cardenolides from Pergularia tomentosa Display Cytotoxic Activity Resulting from Their Potent Inhibition of Na+/K+-ATPase. J Nat Prod 72:1087–1091PubMedCrossRefGoogle Scholar
  31. Rasmann S, Johnson MD, Agrawal AA (2009) Induced responses to herbivory and jasmonate in three milkweed species. J Chem Ecol 35:1326–1334PubMedCrossRefGoogle Scholar
  32. Renwick JAA (1996) Diversity and dynamics of crucifer defenses against adults and larvae of cabbage butterflies. In: Romeo JT, Saunders JA, Barbosa P (eds) Recent Advances in Phytochemistry 30. Phytochemical Diversity and Redundancy in Ecological Interactions. New York, Plenum Press, pp 57–79Google Scholar
  33. Rodriguez-Hahn L, Fonseca G (1991) The cardenolide content of Asclepias linaria. Phytochemistry 30:3941–3942CrossRefGoogle Scholar
  34. Rothschild M (1972) Secondary plant substances and warning colouration in insects. Symp Royal Entomol Soc Lond 6:59–83Google Scholar
  35. Sachdev-Gupta K, Radke CD, Renwick JAA, Dimock MB (1993) Cardenolides from Erysimum cheiranthoides – feeding deterrents to Pieris rapae larvae. J Chem Ecol 19:1355–1369CrossRefGoogle Scholar
  36. Scudder GGE, Moore LV, Isman MB (1986) Sequestration of cardenolides in Oncopeltus fasciatus morphological and physiological adaptations. J Chem Ecol 12:1171–1187CrossRefGoogle Scholar
  37. Simmonds MSJ (2006) The search for plant-derived compounds with antifeedant activity. In: Rai M, Carpinella MC (eds) Advances in phytomedicine, vol 3: Naturally occurring bioactive compounds, Elsevier, Amsterdam, pp 291–324CrossRefGoogle Scholar
  38. Simmonds MSJ, Blaney WM, Fellows LE (1990) Behavioural and electrophysiological study of antifeedant mechanisms associated with polyhydroxy-alkaloids. J Chem Ecol 16:3167–3196CrossRefGoogle Scholar
  39. Simmonds MSJ, Blaney WM, Ley SV, Anderson JC, Banteli R, Denholm A, Green PWC, Grossman RB, Gutteridge C, Jannens L, Smith SC, Toogood PL, Wood A (1995) Behavioural and neurophysiological responses of Spodoptera littoralis to azadirachtin and a range of synthetic analogues. Ent Exp Appl 77:69–80CrossRefGoogle Scholar
  40. Stevenson PC, Simmonds MSJ, Yule MA, Veitch NC, Kite GC, Irwin D, Legg M (2003) Insect antifeedant furanocoumarins from Tetradium daniellii. Phytochemistry 63:41–46PubMedCrossRefGoogle Scholar
  41. Vaughan GL, Jungreis AM (1977) Insensitivity of lepidopteran tissues to ouabain: physiological mechanisms for protection from cardiac glycosides. J Insect Physiol 23:585–589CrossRefGoogle Scholar
  42. Wellsow J, Grayer RJ, Veitch NC, Kokubun T, Lelli R, Kite GC, Simmonds MSJ (2006) Insect antifeedant and antibacterial activity of diterpenoids from species of Plectranthus. Phytochemistry 67:1818–1825PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Paul W. C. Green
    • 1
    Email author
  • Nigel C. Veitch
    • 1
  • Philip C. Stevenson
    • 1
  • Monique S. J. Simmonds
    • 1
  1. 1.Royal Botanic GardensKew, RichmondUK

Personalised recommendations