Arthropod-Plant Interactions

, Volume 5, Issue 2, pp 81–95

Entomovectoring in plant protection

Review Article

Abstract

This paper gives an overview on the unique concept of the entomovector technology to employ pollinating insects, including honey bees and bumble bees in the context of biological control of insect pests and diseases. After a brief introductory description, the multifaceted aspects of this intriguing technology are highlighted by describing the most significant results and achievements of research groups around the world concerning: (1) the importance of vector selection, as this determines the transport efficacy of biocontrol agents into the crop and is influenced by the vector–plant interactions, (2) the different potential biocontrol agents used so far, (3) the significance of the diluent and formulation for an increased vector loading and transport, (4) the different dispenser types developed over the past 20 years, and (5) the safety of this technology to the environment and humans. For all these interactions, we identify in a critical manner the limitations and the successes obtained so far. The needs for further research are also discussed to increase the potential of the entomovector technology in practical use.

Keywords

Pollinator Apis mellifera Bombus terrestris Vector Crop protection Dispenser Biological control agent Microbial control Formulation 

References

  1. Abramson CI, Squire J, Sheridan A, Mulder PG (2004) The effect of insecticides considered harmless to honey bees (Apis mellifera): proboscis conditioning studies by using the insect growth regulators tebufenozide and diflubenzuron. Environ Entomol 33:378–388CrossRefGoogle Scholar
  2. Albano S, Chagon M, de Oliveira D, Houle E, Thibodeau PO, Mexia A (2009) Effectiveness of Apis mellifera and Bombus impatiens as dispensers of the Rootshield® biofungicide (Trichoderma harzianum, strain T-22) in a strawberry crop. Hell Plant Prot J 2:57–66Google Scholar
  3. Alexandrova M, Bazzi C, Lameri P (2002) Bacillus subtilis strain BS-F3: colonisation of pear organs and its action as a biocontrol agent. Acta Hort 590:291–297Google Scholar
  4. Al-mazra’awi MS, Shipp JL, Broadbent AB, Kevan PG (2006a) Dissemination of Beauveria bassiana by honey bees (Hymenoptera: Apidae) for control tarnished plant bug (Hemiptera: Miridae) on canola. Biol Control 35:1569–1577Google Scholar
  5. Al-mazra’awi MS, Shipp JL, Broadbent AB, Kevan PG (2006b) Biological control of Lygus lineolaris (Hemiptera: Miridae) and Frankiniella occidentalis (Thysanoptera: Thripidae) by Bombus impatiens (Hymenoptera: Apidae) vectored Beauveria bassiana in greenhouse sweet pepper. Biol Control 37:89–97CrossRefGoogle Scholar
  6. Al-mazra’awi MS, Kevan PG, Shipp L (2007) Development of Beauveria bassiana dry formulation for vectoring by honey bees Apis mellifera (Hymenoptera: Apidae) to the flowers of crops for pest control. Biocontrol Sci Technol 17:733–741CrossRefGoogle Scholar
  7. Bardas GA, Myresiotis CK, Karaoglanidis GS (2008) Stability and fitness of anilinopyrimidine-resistant strains of Botrytis cinerea. Phytopathol 98:443–450CrossRefGoogle Scholar
  8. Bilu A, Dag A, Elad Y, Shafir S (2004) Honey bee dispersal of biocontrol agents: an evaluation of dispensing devices. Biocontrol Sci Technol 14:607–617CrossRefGoogle Scholar
  9. Bosch J, Kemp WP (2002) Developing and establishing bee species as crop pollinators: the example of Osmia spp. (Hymenoptera: Megachilidae) and fruit trees. Bull Entomol Res 92:3–16PubMedGoogle Scholar
  10. Brimmer TA, Boland GJ (2003) A review of the non-target effects of fungi used to biologically control plant diseases. Agri Ecos Environ 100:3–16CrossRefGoogle Scholar
  11. Butt TM, Carreck NL, Ibrahim L, Williams IH (1998) Honey bee-mediated infection of pollen beetle (Meligethes aeneus Fab.) by the insect-pathogenic fungus, Metarhizium anisopliae. Biocontrol Sci Technol 8:533–538CrossRefGoogle Scholar
  12. Card SD, Pearson MN, Clover GRG (2007) Plant pathogens transmitted by pollen. Austr Plant Pathol 36:455–461CrossRefGoogle Scholar
  13. Carreck NL, Butt TM, Clark SJ, Ibrahim L, Isger EA, Pell JK, Williams IH (2007) Honey bees can disseminate a microbial control agent to more than one inflorescence pest of oilseed rape. Biocontrol Sci Technol 17:179–191CrossRefGoogle Scholar
  14. Cota LV, Maffia LA, Mizubuti ESC, Macedo PEF (2009) Biological control by Clonostachys rosea as a key component in the integrated management of strawberry gray mold. Biol Control 50:222–230CrossRefGoogle Scholar
  15. Cribb DM, Hand DW (1993) A comparative study of the effects of using the honeybee as a pollinating agent of glasshouse tomato. J Hortic Sci 68:79–88Google Scholar
  16. Dag A, Weinbaum SA, Thorp R, Eiskowitch D (2000) Evaluation of pollen dispensers (‘inserts’) effect on fruit set and yield in almond. J Apic Res 39:117–123Google Scholar
  17. Decourtye A, Lacassie E, Pham-Delegue MH (2003) Learning performances of honeybees (Apis mellifera L.) are differentially affected by imidacloprid according to the season. Pest Manag Sci 59:269–278PubMedCrossRefGoogle Scholar
  18. Decourtye A, Armengaud C, Renou M et al (2004a) Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pestic Biochem Physiol 78:83–92CrossRefGoogle Scholar
  19. Decourtye A, Devillers J, Cluzeau S et al (2004b) Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicol Environ Saf 57:410–419PubMedCrossRefGoogle Scholar
  20. Dedej S, Delaplane KS, Scherm H (2004) Effectiveness of honey bees in delivering the biocontrol agent Bacillus subtilis to blueberry flowers to suppress mummy berry disease. Biol Control 31:422–427CrossRefGoogle Scholar
  21. Dedryver CA, Le Ralec A, Fabre F (2010) The conflicting relationships between aphids and men: a review of aphid damage and control strategies. C R Biol 333:539–553PubMedCrossRefGoogle Scholar
  22. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106PubMedCrossRefGoogle Scholar
  23. Dianez F, Santos M, Blanco R, Tello JC (2002) Fungicide resistance in Botrytis cinerea isolates from strawberry crops in Huelva (southwestern Spain). Phytoparasitica 30:529–534CrossRefGoogle Scholar
  24. Droby S, Wisniewski M, Macarisin D, Wilson C (2009) Twenty years of posthavest biocontrol research: is it time for a new paradigm? Postharv Biol Technol 52:137–145CrossRefGoogle Scholar
  25. El Hassani AK, Dacher M, Gauthier M, Armengaud C (2005) Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacol Biochem Behav 82:30–39PubMedCrossRefGoogle Scholar
  26. Elad Y, Freeman S (2002) Biological control of fungal plant pathogens. In: Kempken F (ed) The Mycota, a comprehensive treatise on fungi as experimental systems for basic and applied research. Springer, Heidelberg, GermanyGoogle Scholar
  27. Elad Y, Zimand G, Zaqs Y, Zuriel S, Chet I (1993) Use of Trichoderma harzianum in combination or alternation with fungicides to control cucumber grey mould (Botrytis cinerea) under commercial greenhouse conditions. Plant Pathol 42:324–332CrossRefGoogle Scholar
  28. Elad Y, Kirshner B, Sztejnberg A (1998) Management of powdery mildew and gray mold of cucumber by Trichoderma harzianum T39 and Ampelomyces quisqualis AQ10. Biocontrol 43:241–251CrossRefGoogle Scholar
  29. Errampalli D, Brubacher NR (2006) Biological and integrated control of postharvest blue mold (Penicillium expansum) of apples by Pseudomonas syringae and cyprodinil. Biol Control 36:49–56CrossRefGoogle Scholar
  30. Escande AR, Laich FS, Pedraza MV (2002) Field testing of honeybee-dispersed Trichoderma spp. to manage sunflower head rot (Sclerotinia sclerotiorum). Plant Pathol 51:346–351CrossRefGoogle Scholar
  31. Evidente A, Andolfi A, Cimmino A, Ganassi S, Altomare C, Favilla M, De Cristofaro A, Vitagliano S, Sabatini MA (2009) Bisorbicillinoids produced by the fungus Trichoderma citrinoviride affect feeding preference of the aphid schizaphis graminum. J Chem Ecol 35:533–541PubMedCrossRefGoogle Scholar
  32. Farina WM, Gruter C, Acosta L, SMc Cabe (2007) Honeybees learn floral odors while receiving nectar from foragers within the hive. Naturwissensch 94:55–60CrossRefGoogle Scholar
  33. Forrest J, Thomson JD (2009) Background complexity affects colour preference in bumblebees. Naturwissensch 96:921–925CrossRefGoogle Scholar
  34. Gil M (2010) Reward expectations in honeybees. Commun Integr Biol 3:95–100PubMedCrossRefGoogle Scholar
  35. Goulson D (2010) Bumblebees behaviour and ecology. Oxford University Press, New York, p 317Google Scholar
  36. Gross HR, Hamm JJ, Carpenter JE (1994) Design and application of a hive-mounted device that uses honey bees (Hymenoptera: Apidae) to disseminate Heliothis nuclear polyhedrosis virus. Biol Control 23:492–501Google Scholar
  37. Guerra-Sanz JM (2008) Crop pollination in greenhouses. In: James RR, Pitts-Singer T (eds) Bee pollination in agriculture ecosystems. Oxford University Press, New YorkGoogle Scholar
  38. Guetsky R, Shtienberg D, Elad Y (2001) Combining biocontrol agents to reduce the variability of biological control. Phytopathol 92:621–622CrossRefGoogle Scholar
  39. Guetsky R, Elad DSY, Fischer E, Dinoor A (2002) Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Biol Control 92:976–985Google Scholar
  40. Guez D, Suchail S, Gauthier M, Maleszka R, Belzunces LP (2001) Contrasting effects of imidacloprid on habituation in 7- and 8-day-old honeybees (Apis mellifera). Neurobiol Learn Mem 76:183–191PubMedCrossRefGoogle Scholar
  41. Hjeljord LG, Stensvand A, Tronsmo A (2000) Effect of temperature and nutrient stress on the capacity of commercial Trichoderma products to control Botrytis cinerea and Mucor piriformis in greenhouse strawberries. Biol Control 19:149–160CrossRefGoogle Scholar
  42. Hokkanen HMT, Menzler-Hokkanen I (2007) Use of honeybees in the biological control of plant diseases. Entomol Res 37:A62–A63CrossRefGoogle Scholar
  43. Hokkanen HMT, Menzler-Hokkanen I (2009) Successful use of honey bees for grey mould biocontrol on strawberries and raspberries in Finland. Apidologie 40:659Google Scholar
  44. Hokkanen HMT, Zeng QQ, Menzler-Hokkanen I (2004) Assessing the impact of Metarhizium and Beauveria on bumblebees. In: Hokkanen H, Hajek EA (eds) Environmental impacts of microbial insecticides, needs and methods for risk assessment, vol 1. Kluwer Academic Publishers, The NetherlandsGoogle Scholar
  45. Hokkanen HMT, Menzler-Hokkanen I, Mustalahti A-M (2011) Honey bees (Apis mellifera) for precision biocontrol of grey mould (Botrytis cinerea) with Gliocladium catenulatum on strawberries and raspberries in Finland. Arthropod-Plant InteractGoogle Scholar
  46. Israel MS, Boland GJ (1993) Influence of formulation on efficacy of honey bees to transmit biological controls for management of Sclerotinia stem rot of canola. Can J Plant Pathol 14:244Google Scholar
  47. James RR, Hayes GW, Leland JE (2006) Field trials on the microbial control of varroa with the fungus Metarhizium anisopliae. Am Bee J 146:968–972Google Scholar
  48. Johnson KB, Stockwell VO, Mclaughlin RJ (1993a) Effect of antagonistic bacteria on establishment of honey bee-dispersed Erwinia amylovora in pear blossoms and on fire blight control. Phytopathol 83:995–1002CrossRefGoogle Scholar
  49. Johnson KB, Stockwell VO, Burgett DM, Sugar D, Loper JE (1993b) Dispersal of Erwinia amylovora and Pseudomonas fluorescens by honeybees from hives to apple and pear blossoms. Phytopathol 83:478–484CrossRefGoogle Scholar
  50. Jones RA (2004) Using epidemiological information to develop effective integrated virus disease management strategies. Virus Res 100:5–30PubMedCrossRefGoogle Scholar
  51. Jyoti JL, Brewer GJ (1999) Honeybees (Hymenoptera: Apidae) as vector of Bacillus thuringiensis for control of branded sunflower moth (Lepidoptera: Tortricidae). Environ Entomol 28:1172–1176Google Scholar
  52. Kangha LHB, James RR, Boucias DG (2002) Hirsutella thompsonii and Metarhizium anisopliae as potential microbial control agents of Varroa destructor, a honey bee parasite. J Invertebr Pathol 81:175–184CrossRefGoogle Scholar
  53. Kangha LHB, Jones WA, Gracia C (2006) Efficacy of strips coated with Metarhizium anisopliae for control of Varroa destructor (Acari: Varroidae) in honey bee colonies in Texas and Florida. Exp Appl Acarol 40:249–258CrossRefGoogle Scholar
  54. Kapongo JP, Shipp L, Kevan P, Sutton JC (2008a) Co-vectoring of Beauveria bassiana and Clonostachys rosea by bumblebees (Bombus impatiens) for control of insect pests and suppression of grey mould in greenhouse tomato and sweet pepper. Biol Control 46:508–514CrossRefGoogle Scholar
  55. Kapongo JP, Shipp L, Kevan P (2008b) Optimal concentration of Beauveria bassiana vectored by bumble bees in relation to pest and bee mortality in greenhouse tomato and sweet pepper. Biocontrol 53:797–812CrossRefGoogle Scholar
  56. Kevan PG, Kapongo J-P, Al-mazra’awi M, Shipp L (2008) Honey bees, bumble bees and biocontrol. In: James RR, Pitts-Singer T (eds) Bee pollination in agriculture ecosystems. Oxford University Press, New YorkGoogle Scholar
  57. Kovach J, Petzoldt R, Harman GE (2000) Use of honeybees and bumble bees to disseminate Trichoderma harzianum 1295–22 to strawberries for Botrytis control. Biol Control 18:235–242CrossRefGoogle Scholar
  58. Kretschmer M, Leroch M, Mosbach A, Walker AS, Fillinger S, Mernke D, Schoonbeek HJ, Pradier JM, Leroux P, De Waard MA, Hahn M (2009) Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathog 5(12):e1000696. doi:10.1371/journal.ppat.1000696
  59. Laloi D, Sandoz JC, Picard-Nizou AL, Marchesi A, Pouvreau A, Tasei JN, Poppy G, Pham-Delegue MH (1999) Olfactory conditioning of the proboscis extension in bumble bees. Entomol Exp Appl 90:123–129CrossRefGoogle Scholar
  60. Lambin M, Armengaud C, Raymond S (2001) Imidacloprid induced facilitation of the proboscis extension reflex habituation in the honeybee. Arch Insect Biochem Physiol 48:129–134PubMedCrossRefGoogle Scholar
  61. Lunau K, Unseld K, Wolter F (2009) Visual detection of diminutive floral guides in the bumblebee Bombus terrestris and in the honeybee Apis mellifera. J Comp Physiol 195A:1121–1130CrossRefGoogle Scholar
  62. Maccagnani B, Mocioni M, Gullino ML, Ladurner E (1999) Application of Trichoderma harzianum by using Apis mellifera as a vector for the control of grey mold of strawberry: first results. IOBC Bull 22:161–164Google Scholar
  63. Maccagnani B, Mocioni M, Ladurner E, Gullino ML, Maini S (2005) Investigation of hive-mounted devices for the dissemination of microbiological preparations by Bombus terrestris. Bull Insectol 58:3–8Google Scholar
  64. Maccagnani BBC, Biondi E, Tesoriero D, Maini S (2006) Potential of Osmia cornuta as a carrier of antagonist bacteria in biological control of fire blight: a comparison with Apis mellifera. Acta Hort (ISHS) 704:379–386Google Scholar
  65. Mertley JC, Mackenzie SJ, Legard DE (2002) Timing of fungicide applications for Botrytis cinerea based on development stage of strawberry flowers and fruit. Plant Dis 86:1019–1024CrossRefGoogle Scholar
  66. Molet M, Chittka L, Raine NE (2009) How floral odours are learned inside the bumblebee (Bombus terrestris) nest? Naturwissensch 96:213–219CrossRefGoogle Scholar
  67. Møller K, Kristensen K, Yohalem D, Larsen J (2009) Biological management of gray mold in pot roses by co-inoculation of the biocontrol agent Ulocladium atrum and the mycorrhizal fungus Glomus mosseae. Biol Control 49:120–125CrossRefGoogle Scholar
  68. Mommaerts V, Sterk G, Smagghe G (2006) Hazards and uptake of chitin synthesis inhibitors in bumblebees Bombus terrestris. Pest Manag Sci 62:752–758PubMedCrossRefGoogle Scholar
  69. Mommaerts V, Platteau G, Boulet J, Sterk G, Smagghe G (2008) Trichoderma-based biological control agents are compatible with the pollinator Bombus terrestris: a laboratory study. Biol Control 46:463–466CrossRefGoogle Scholar
  70. Mommaerts V, Sterk G, Hofmann L, Smagghe G (2009) A laboratory evaluation to determine the compatibility of microbiological control agents with the pollinator Bombus terrestris. Pest Manag Sci 65:949–955PubMedCrossRefGoogle Scholar
  71. Mommaerts V, Jans K, Smagghe G (2010a) Side effects of commercial Bacillus thuringiensis insecticides on micro-colonies of Bombus terrestris. Pest Manag Sci 66:520–525PubMedCrossRefGoogle Scholar
  72. Mommaerts V, Kurt P, Vandeven J, Jans K, Sterk G, Hoffmann L, Smagghe G (2010b) Development of a new dispenser for microbiological control agents and evaluation of dissemination by bumblebees in greenhouse strawberries. Pest Manag Sci 66:1199–1207PubMedCrossRefGoogle Scholar
  73. Mommaerts V, Reynders S, Boulet J, Besard L, Sterk G, Smagghe G (2010c) Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. Ecotoxicology 19:207–215PubMedCrossRefGoogle Scholar
  74. Myresiotis CK, Karaoglanidis GS, Tzavella-Monari K (2007) Resistance of Botrytis cinerea isolates from vegetable crops to anilinopyrimidine, phenylpyrrole, hydroxyanilide, benzimidazole, and dicarboximide fungicides. Plant Dis 91:407–413CrossRefGoogle Scholar
  75. Nallathambi P, Ulmamaheswari C, Thakore BBL, More TA (2009) Post-harvest management of ber (Ziziphus mauritiana Lamk) fruit rot (Alternaria alternate Fr. Keissler) using Trichoderma species, fungicides and their combinations. Crop Prot 28:525–532CrossRefGoogle Scholar
  76. Ngugi HK, Scherm H, Lehman JS (2002) Relationship between blueberry flower age, pollination and conidal infection by Monilinia vaccinii-corymbosi. Ecol Popul Biol 92:1104–1109Google Scholar
  77. Nilsson U, Gripwall E (1999) Influence of application technique on the viability of the biological control agents Verticillium lecanii and Stenernema feltiae. Crop Prot 18:53–59CrossRefGoogle Scholar
  78. Noma T, Strickler K (2000) Effects of Beauveria bassiana on Lygus hesperus (Hemiptera: Miridae) feeding and oviposition. Environ Entomol 29:394–402CrossRefGoogle Scholar
  79. Osborne JL, Martin AP, Carreck NL, Swain JL, Knight ME, Goulson D, Hale RJ, Sanderson RA (2008) Bumblebee flight distances in relation to the forage landscape. J Anim Ecol 77:401–415CrossRefGoogle Scholar
  80. Peng G, Sutton JC, Kevan PG (1992) Effectiveness of honeybees for applying the biocontrol agent Gliocladium rosea to strawberry flowers to suppress Botrytis cinerea. Can J Plant Pathol 14:117–129CrossRefGoogle Scholar
  81. Pettis JS, Kochansky J, Feldlaufer MF (2004) Larval Apis mellifera L. (Hymenoptera: Apidae) mortality after topical application of antibiotics and dusts. J Econ Entomol 97:171–176PubMedCrossRefGoogle Scholar
  82. Pitts-Singer TL (2008) Past and present management of alfalfa bees. In: James RR, Pitts-Singer T (eds) Bee pollination in agriculture ecosystems. Oxford University Press, New York, pp 105–122CrossRefGoogle Scholar
  83. Raine NE, Chittka L (2007) The adaptive significance of sensory bias in a foraging context: floral colour preferences in the bumblebee Bombus terrestris. PLoS ONE 2(6):e556. doi:10.1371/journal.pone.0000556
  84. Rands SA, Whitney HM (2008) Floral temperature and optimal foraging: Is heat a feasible floral reward for pollinators? PLoS ONE 3(4):e2007. doi:10.1371/journal.pone.0002007
  85. Reynolds DR, Riley JR (2002) Remote-sensing, telemetric and computer-based-technologies for investigating insect movement: a survey of existing and potential techniques. Comput Electron Agric 35:271–307CrossRefGoogle Scholar
  86. Robinson-Boyer L, Jeger MJ, Xu X-M, Jeffries P (2009) Management of strawberry grey mould using mixtures of biocontrol agents with different mechanisms of action. Biocontrol Sci Technol 19:1051–1065CrossRefGoogle Scholar
  87. Roldàn-Serrano AS, Guerra-Sanz JM (2005) Reward attractions of zucchini flowers (Cucurbita pepo L.) to bumblebees (Bombus terrestris L.). Europ J Hort Sci 70:23–28Google Scholar
  88. Scherm H, Ngugi HK, Savelle AT, Edwards JR (2004) Biological control of infection of blueberry flowers caused by Monilinia vaccinii-corymbosi. Biol Control 29:199–206CrossRefGoogle Scholar
  89. Sgolastra F, Bosch J, Molowny-Horas R, Maini S, Kemp WP (2010) Effect of temperature regime on diapause intensity in an adult-wintering Hymenopteran with obligate diapause. J Insect Physiol 56:185–194PubMedCrossRefGoogle Scholar
  90. Shafir S, Dag A, Bilu A, Abu-Toamy M, Elad Y (2006) Honeybee dispersal of the biocontrol agent and Trichoderma harzianum T39: effectiveness in suppressing Botrytis cinerea on strawberry under field conditions. Eur J Plant Pathol 116:119–128CrossRefGoogle Scholar
  91. Sharma RR, Singh D, Singh R (2009) Biological control of postharvest of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221CrossRefGoogle Scholar
  92. Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behaviour. Proc Natl Acad Sci USA 98:3898–3903PubMedCrossRefGoogle Scholar
  93. Stout JC, Goulson D (2002) The influence of nectar secretion rates on the responses of bumblebees (Bombus spp.) to previously visited flowers. Behav Ecol Sociobiol 52:239–246CrossRefGoogle Scholar
  94. Sugar D, Basile SR (2008) Timing and sequence of postharvest fungicide and biocontrol agent applications for control of pear decay. Postharv Biol Technol 49:107–112CrossRefGoogle Scholar
  95. Thompson HM, Hunt LV (1999) Extrapolation from honeybees to bumblebees in pesticide risk assessment. Ecotoxicology 8:147–166CrossRefGoogle Scholar
  96. Thomson SV, Hansen DR, Flint KM, Vandenberg JD (1992) Dissemination of bacteria antagonistic to Erwinia amylovora by honey bees. Plant Dis 76:1052–1056CrossRefGoogle Scholar
  97. Toda NRT, Song J, Nieh JC (2009) Bumblebees exhibit the memory spacing effect. Naturwissensch 96:1185–1191CrossRefGoogle Scholar
  98. van der Steen JJM, Langerak CJ, Van Tongeren CAM, Dik AJ (2003) Aspects of the use of honeybees and bumblebees as vector of antagonistic micro-organisms in plant disease control. Proc Neth Entomol Soc Meeting 15:41–46Google Scholar
  99. Vandenberg JD, Shimanuki H (1986) Two commercial preparations of the beta exotoxin of Bacillus thuringiensis influence the mortality of caged adult honeybees Apis mellifera (Hymenoptera: Apidae). Environ Entomol 15:166–169Google Scholar
  100. Vandenbergi JD (1990) Safety of four entomopathogens for caged adult honey bees (Hymenoptera: Apidae). J Econ Entomol 83:755–759Google Scholar
  101. Vanneste JL (1996) Honey bees and epiphytic bacteria to control fire blight, a bacterial disease of apple and pear. Biocont News Inform 17:67N–78NGoogle Scholar
  102. Vicens N, Bosch J (2000) Pollinating efficacy of Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae, Apidae) on ‘Red Delicious’ apple. Environ Entomol 29:235–240CrossRefGoogle Scholar
  103. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86CrossRefGoogle Scholar
  104. Whitney HM, Dyer A, Chittka L, Rands SA, Glover BJ (2008) The interaction of temperature and sucrose concentration on foraging preferences in bumblebees. Naturwissensch 95:845–850CrossRefGoogle Scholar
  105. Williamson B, Tudzynski B, Tudzynski P, Van Kan JAL (2007) Botrytis cinerea: the cause of grey mold disease. Mol Plant Pathol 8:561–580PubMedCrossRefGoogle Scholar
  106. Wilson M, Lindow SE (1993) Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathol 83:117–123CrossRefGoogle Scholar
  107. Wilson M, Epton HAS, Sigee DC (1992) Interactions between Erwinia herbicola and E. amylovora on the stigma of hawthorn blossoms. Phytopathol 82:914–918CrossRefGoogle Scholar
  108. Wolf S, Moritz RFA (2008) Foraging distance in Bombus terrestris L. (Hymenoptera: Apidae). Apidologie 39:419–427CrossRefGoogle Scholar
  109. Wolf TJ, Ellington CP, Begley IS (1999) Foraging costs in bumblebees: field conditions cause large individual differences. Insectes Soc 46:291–295CrossRefGoogle Scholar
  110. Yu H, Sutton JC (1997) Effectiveness of bumblebees and honeybees for delivering inoculum of Gliocladium roseum to raspberry flowers to control Botrytis cinerea. Biol Control 10:113–122CrossRefGoogle Scholar
  111. Zhang SW, Bartsch K, Srintvasan MV (1996) Maze learning by honeybees. Neurobiol Learn Mem 66:267–282PubMedCrossRefGoogle Scholar
  112. Zhou T, Northover J, Schneider KE, Lu XW (2002) Interactions between Pseudomonas syringae MA-4 and cyprodinil in the control of blue mold and gray mold of apples. Can J Plant Pathol 24:154–161CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Laboratory of Cellular Genetics, Department of Biology, Faculty of Science and Bio-engineering SciencesFree University of BrusselsBrusselsBelgium
  2. 2.Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium

Personalised recommendations