Arthropod-Plant Interactions

, Volume 3, Issue 1, pp 27–43 | Cite as

Flower colours along an alpine altitude gradient, seen through the eyes of fly and bee pollinators

  • Sarah E. J. Arnold
  • Vincent Savolainen
  • Lars Chittka
Original Paper


Alpine flowers face multiple challenges in terms of abiotic and biotic factors, some of which may result in selection for certain colours at increasing altitude, in particular the changing pollinator species composition, which tends to move from bee-dominated at lower elevations to fly-dominated in high-alpine regions. To evaluate whether growing at altitude—and the associated change in the dominant pollinator groups present—has an effect on the colour of flowers, we analysed data collected from the Dovrefjell National Park in Norway. Unlike previous studies, however, we considered the flower colours according to ecologically relevant models of bee and fly colour vision and also their physical spectral properties independently of any colour vision system, rather than merely looking at human colour categories. The shift from bee to fly pollination with elevation might, according to the pollination syndrome hypothesis, lead to the prediction that flower colours should shift from more bee-blue and UV-blue flowers (blue/violet to humans, i.e. colours traditionally associated with large bee pollinators) at low elevations to more bee-blue-green and green (yellow and white to humans—colours often linked to fly pollination) flowers at higher altitude. However, although there was a slight increase in bee-blue-green flowers and a decrease in bee-blue flowers with increasing elevation, there were no statistically significant effects of altitude on flower colour as seen either by bees or by flies. Although flower colour is known to be constrained by evolutionary history, in this sample we also did not find evidence that phylogeny and elevation interact to determine flower colours in alpine areas.


Flower colour Pollinator diversity Insect vision Alpine flowers Pollination 



The raw data for this study were collected when LC worked under the auspices of the Institute of Neurobiology, Free University of Berlin. Financial support came from a Leibniz Award from the German Research Foundation (DFG) to R. Menzel. We wish to thank Simen Bretten for help with identification of the plants, and Neal Williams and three anonymous reviewers for their helpful comments on the manuscript. SEJA was supported by a Biotechnology and Biological Sciences Research Council/Co-operative Award in Science and Engineering (CASE) studentship in association with Kew Enterprises (BBS/S/L/2005/12155A).


  1. Aceto S, Caputo P, Cozzolino S, Gaudio L, Moretti A (1999) Phylogeny and evolution of Orchis and allied genera based on ITS DNA variation: morphological gaps and molecular continuity. Mol Phylogenet Evol 13:67–76. doi: 10.1006/mpev.1999.0628 PubMedCrossRefGoogle Scholar
  2. Albert VA, Williams SE, Chase MW (1992) Carnivorous plants: phylogeny and structural evolution. Science 257:1491–1495. doi: 10.1126/science.1523408 PubMedCrossRefGoogle Scholar
  3. Altshuler DL (2003) Flower color, hummingbird pollination, and habitat irradiance in four Neotropical forests. Biotropica 35:344–355Google Scholar
  4. Anderberg AA, Stahl B, Källersjö M (1998) Phylogenetic interrelationships in the Primulales inferred from cpDNA rbcL sequence data. Plant Syst Evol 211:93–102. doi: 10.1007/BF00984914 CrossRefGoogle Scholar
  5. Antonelli A (2008) Higher level phylogeny and evolutionary trends in Campanulaceae subfam. Lobelioideae: molecular signal overshadows morphology. Mol Phylogenet Evol 46:1–18. doi: 10.1016/j.ympev.2007.06.015 PubMedCrossRefGoogle Scholar
  6. Arnold SEJ, Savolainen V, Chittka L (2008) FReD: the floral reflectance spectra database. Nat Preced: doi:  10.1038/npre.2008.1846.1031
  7. Arroyo MTK, Primack R, Armesto J (1982) Community studies in pollination ecology in the high temperate Andes of central Chile. I. Pollination mechanisms and altitudinal variation. Am J Bot 69:82–97. doi: 10.2307/2442833 CrossRefGoogle Scholar
  8. Backlund A, Bremer B (1997) Phylogeny of the Asteridae s.str. based on rbcL sequences with particular reference to the Dipsacales. Plant Syst Evol 207:225–254. doi: 10.1007/BF00984390 CrossRefGoogle Scholar
  9. Ben-Tal Y, King RW (1997) Environmental factors involved in colouration of flowers of Kangaroo Paw. Sci Hortic (Amsterdam) 72:35–48. doi: 10.1016/S0304-4238(97)00071-X CrossRefGoogle Scholar
  10. Boeing WJ, Leech DM, Williamson CE, Cooke S, Torres L (2004) Damaging UV radiation and invertebrate predation: conflicting selective pressures for zooplankton vertical distribution in the water column of low DOC lakes. Oecologia 138:603–612. doi: 10.1007/s00442-003-1468-0 PubMedCrossRefGoogle Scholar
  11. Bradshaw HD Jr, Schemske DW (2003) Allele substitution at a flower colour locus produces a pollinator shift in monkey flowers. Nature 426:176–178. doi: 10.1038/nature02106 PubMedCrossRefGoogle Scholar
  12. Bremer K (2000) Early Cretaceous lineages of monocot flowering plants. Proc Natl Acad Sci USA 97:4707–4711. doi: 10.1073/pnas.080421597 PubMedCrossRefGoogle Scholar
  13. Briscoe AD (2000) Six opsins from the butterfly Papilio glaucus: molecular phylogenetic evidence for paralogous origins of red-sensitive visual pigments in insects. J Mol Evol 51:110–121PubMedGoogle Scholar
  14. Briscoe AD, Bernard GD (2005) Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphaline butterfly species. J Exp Biol 208:687–696. doi: 10.1242/jeb.01453 PubMedCrossRefGoogle Scholar
  15. Briscoe AD, Chittka L (2001) The evolution of colour vision in insects. Ann Rev Ent 46:471–510. doi: 10.1146/annurev.ento.46.1.471 CrossRefGoogle Scholar
  16. Cameron KM et al (1999) A phylogenetic analysis of the Orchidaceae: evidence from rbcL nucleotide sequences. Am J Bot 86:208–224. doi: 10.2307/2656938 CrossRefGoogle Scholar
  17. Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9. doi: 10.1111/j.1751-1097.1999.tb01944.x CrossRefGoogle Scholar
  18. Chase MW et al (1993) Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Ann Mo Bot Gard 80:528–548+550–580Google Scholar
  19. Chittka L (1992) The color hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 170:533–543Google Scholar
  20. Chittka L (1997) Bee color vision is optimal for coding flower color, but flower colors are not optimal for being coded—why? Isr J Plant Sci 45:115–127Google Scholar
  21. Chittka L, Kevan PG (2005) Flower colour as advertisement. In: Dafni A, Kevan PG, Husband BC (eds) Practical pollination biology. Enviroquest Ltd., Cambridge, ON, Canada, pp 157–196Google Scholar
  22. Chittka L, Menzel R (1992) The evolutionary adaptation of flower colors and the insect pollinators’ color vision systems. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 171:171–181Google Scholar
  23. Chittka L, Shmida A, Troje N, Menzel R (1994) Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera. Vision Res 34:1489–1508. doi: 10.1016/0042-6989(94)90151-1 PubMedCrossRefGoogle Scholar
  24. Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwiss 86:361–377. doi: 10.1007/s001140050636 CrossRefGoogle Scholar
  25. Chittka L, Spaethe J, Schmidt A, Hickelsberger A (2001) Adaptation, constraint, and chance in the evolution of flower color and pollinator color vision. In: Chittka L, Thomson JD (eds) Cognitive ecology of pollination. Cambridge University Press, Cambridge, pp 106–126Google Scholar
  26. Conti E, Soltis DE, Hardig TM, Schneider J (1999) Phylogenetic relationships of the silver saxifrages (Saxifraga, sect. Ligulatae Haworth): implications for the evolution of substrate specificity, life histories, and biogeography. Mol Phylogenet Evol 13:536–555. doi: 10.1006/mpev.1999.0673 PubMedCrossRefGoogle Scholar
  27. Cummings MP, Nugent JM, Olmstead RG, Palmer JD (2003) Phylogenetic analysis reveals five independent transfers of the chloroplast gene rbcL to the mitochondrial genome in angiosperms. Curr Genet 43:131–138PubMedGoogle Scholar
  28. Desfeux C, Maurice S, Henry JP, Lejeune B, Gouyon PH (1996) Evolution of reproductive systems in the genus Silene. Proc R Soc Lond B Biol Sci 263:409–414. doi: 10.1098/rspb.1996.0062 CrossRefGoogle Scholar
  29. Dyer AG, Chittka L (2004) Biological significance of discriminating between similar colours in spectrally variable illumination: bumblebees as a study case. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190:105–114. doi: 10.1007/s00359-003-0475-2 PubMedCrossRefGoogle Scholar
  30. Faegri K, van der Pijl L (1978) The principles of pollination ecology. Pergamon Press, OxfordGoogle Scholar
  31. Fineblum WL, Rausher MD (1997) Do floral pigmentation genes also influence resistance to enemies? The W locus in Ipomoea purpurea. Ecology 78:1646–1654Google Scholar
  32. Fiz O, Vargas P, Alarcon M, Aedo C, Garcia JL, Aldasoro JJ (2008) Phylogeny and historical biogeography of Geraniaceae in relation to multiple major increases and decreases in mitochondrial climate changes and pollination ecology. Syst Bot 33:326–342. doi: 10.1600/036364408784571482 CrossRefGoogle Scholar
  33. Forest F et al (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757–760. doi: 10.1038/nature05587 PubMedCrossRefGoogle Scholar
  34. Friedman JW, Shmida A (1995) Pollination, gathering nectar and the distribution of flower species. J Theor Biol 175:127–138. doi: 10.1006/jtbi.1995.0125 CrossRefGoogle Scholar
  35. Giurfa M, Núñez J, Chittka L, Menzel R (1995) Colour preferences of flower-naive honeybees. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 177:247–259Google Scholar
  36. Gumbert A, Kunze J, Chittka L (1999) Floral colour diversity in plant communities, bee colour space and a null model. Proc R Soc Lond B Biol Sci 266:1711–1716. doi: 10.1098/rspb.1999.0836 CrossRefGoogle Scholar
  37. Guo H, et al. (2007) Identification of Radix Astragali by DNA sequence of its ITS, rbcL, matk, cox1, and NAD1-intron2. Direct submission: School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, ChinaGoogle Scholar
  38. Hansson LA (2000) Induced pigmentation in zooplankton: a trade-off between threats from predation and ultraviolet radiation. Proc R Soc Lond B Biol Sci 267:2327–2331. doi: 10.1098/rspb.2000.1287 CrossRefGoogle Scholar
  39. Hardie RC, Kirschfeld K (1983) Ultraviolet sensitivity of fly photoreceptors R7 and R8: evidence for a sensitising function. Biophys Struct Mech 9:171–180. doi: 10.1007/BF00537814 CrossRefGoogle Scholar
  40. Hosouchi T, Tsuruoka H, Kotani H (2007) Sequencing analysis of Draba nemorosa chloroplast DNA. Direct submission: NCBI Genome Project, National Centre for Biotechnology Information, NIH, Bethesda, MD 20894, USAGoogle Scholar
  41. Inamura A, Ohashi Y, Sato E, Yoda Y, Masuzawa T, Yoshinaga K (1998) Intraspecific sequence variation of chloroplast DNA and a molecular phytogeographic study of Polygonum cuspidatum. Direct submission: Shizuoka University, Faculty of Science, Oya 836, Shizuoka 422–8529, JapanGoogle Scholar
  42. Johnson ET, Berhow MA, Dowd PF (2008) Colored and white sectors from star-patterned Petunia flowers display differential resistance to corn earworm and cabbage looper. J Chem Ecol 34:757–765. doi: 10.1007/s10886-008-9444-0 PubMedCrossRefGoogle Scholar
  43. Jung YH, Han SH, Oh YS, Oh MY (2001). Direct submission: Department of Biology, College of Natural Sciences, Cheju National University, 1 Ara-Dong, Jeju 690–756, KoreaGoogle Scholar
  44. Kalisz S, Kramer EM (2008) Variation and constraint in plant evolution and development. Heredity 100:171–177. doi: 10.1038/sj.hdy.6800939 PubMedCrossRefGoogle Scholar
  45. Kearns CA (1992) Anthophilous fly distribution across an elevation gradient. Am Midl Nat 127:172–182. doi: 10.2307/2426332 CrossRefGoogle Scholar
  46. Kevan PG (1972) Floral colors in the high arctic with reference to insect-flower relations and pollination. Can J Bot 28:2289–2316. doi: 10.1139/b72-298 CrossRefGoogle Scholar
  47. Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Ann Rev Ent 28:407–453. doi: 10.1146/annurev.en.28.010183.002203 CrossRefGoogle Scholar
  48. Kevan PG, Giurfa M, Chittka L (1996) Why are there so many and so few white flowers? Trends Plant Sci 1:280–284. doi: 10.1016/1360-1385(96)20008-1 CrossRefGoogle Scholar
  49. Kim KJ, Jansen RK (1995) ndhF sequence evolution and the major clades in the sunflower family. Proc Natl Acad Sci USA 92:10379–10383. doi: 10.1073/pnas.92.22.10379 PubMedCrossRefGoogle Scholar
  50. Kondo K, Terabayashi S, Okada M, Yuan C, He S (1996) Phylogenetic relationship of medicinally important Cnidium offcinale and Japanese Apiaceae besed on rbcL sequences. J Plant Res 109:21–27. doi: 10.1007/BF02344283 CrossRefGoogle Scholar
  51. Kron KA (2001). Direct submission: Wake Forest University, Winston-Salem, NC 27109–7325, USAGoogle Scholar
  52. Kron KA, Chase MW (1993) Systematics of the Ericaceae, Empetraceae, Epacridaceae and related taxa based upon rbcL sequence data. Ann Mo Bot Gard 80:735–741. doi: 10.2307/2399857 CrossRefGoogle Scholar
  53. Kron KA, King JM (1996) Cladistic relationships of Kalmia, Leiophyllum and Loiseleuria (Phyllodoceae, Ericaceae) based on rbcL and nrITS data. Syst Bot 21:17–29. doi: 10.2307/2419560 CrossRefGoogle Scholar
  54. Kron KA, Judd WS, Crayn DM (1999) Phylogenetic analyses of Andromedeae (Ericaceae subfam. Vaccinioideae). Am J Bot 86:1290–1300. doi: 10.2307/2656777 PubMedCrossRefGoogle Scholar
  55. Lázaro A, Hegland SJ, Totland Ø (2008) The relationships between floral traits and specificity of pollination systems in three Scandinavian plant communities. Oecologia 157:249–257. doi: 10.1007/s00442-008-1066-2 PubMedCrossRefGoogle Scholar
  56. Levin RA et al (2003) Family-level relationships of Onagraceae based on chloroplast rbcL and ndhF data. Am J Bot 90:107–115. doi: 10.3732/ajb.90.1.107 CrossRefGoogle Scholar
  57. Li M et al (2008) Development of COS genes as universally amplifiable markers for phylogenetic reconstructions of closely related plant species. Cladistics 24:727–745. doi: 10.1111/j.1096-0031.2008.00207.x CrossRefGoogle Scholar
  58. Lid J, Lid DT (2005) Norsk Flora, 7th edn. Det Norske Samlaget, OsloGoogle Scholar
  59. Lunau K, Maier EJ (1995) Innate colour preferences of flower visitors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 177:1–19Google Scholar
  60. Lunau K, Wacht S, Chittka L (1996) Colour choices of naive bumble bees and their implications for colour perception. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 178:477–489Google Scholar
  61. Maddison WP, Maddison DR (1992) MacClade: analysis of phylogeny and character evolution. Sinauer Associates, Inc., Sunderland, MAGoogle Scholar
  62. Manhart JR, Hugh JH, Wilson D (1991) Phylogeny of the Caryophyllales. Direct submission, GenBankGoogle Scholar
  63. McCall C, Primack R (1992) Influence of flower characteristics, weather, time of day, and season on insect visitation rates in three plant communities. Am J Bot 79:434–442. doi: 10.2307/2445156 CrossRefGoogle Scholar
  64. Menzel R (1985) Learning in honey bees in an ecological and behavioral context. In: Hölldobler B, Lindauer M (eds) Experimental behavioral ecology, vol 31. Gustav Fischer Verlag, Stuttgart, pp 55–74Google Scholar
  65. Menzel R, Shmida A (1993) The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a study case. Biol Rev Camb Philos Soc 68:81–120. doi: 10.1111/j.1469-185X.1993.tb00732.x CrossRefGoogle Scholar
  66. Morante J, Desplan C (2008) The color-vision circuit in the medulla of Drosophila. Curr Biol 18:553–565. doi: 10.1016/j.cub.2008.02.075 PubMedCrossRefGoogle Scholar
  67. Mori M, Yoshida Y, Matsunaga T, Nikaido O, Kameda K, Kondo T (2005) UV-B protective effect of a polyacylated anthocyanin, HBA, in flower petals of the blue morning glory, Ipomoea tricolor cv. Heavenly Blue. Bioorg Med Chem 13:2015–2020. doi: 10.1016/j.bmc.2005.01.011 PubMedCrossRefGoogle Scholar
  68. Muir G, Filatov D (2007) A selective sweep in the chloroplast DNA of dioecious Silene (section Elisanthe). Genetics 177:1239–1247. doi: 10.1534/genetics.107.071969 PubMedCrossRefGoogle Scholar
  69. Neumayer J, Spaethe J (2007) Flower color, nectar standing crop, and flower visitation of butterflies in an alpine habitat in central Europe. Entomol Gen 29:269–284Google Scholar
  70. Olmstead RG, Michaels HJ, Scott KM, Palmer JD (1992) Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of rbcL. Ann Mo Bot Gard 79:249–265. doi: 10.2307/2399768 CrossRefGoogle Scholar
  71. Panero JL, Funk VA (2008) The value of sampling anomalous taxa in phylogenetic studies: Major clades of the Asteraceae revealed. Mol Phylogenet Evol 47:757–782. doi: 10.1016/j.ympev.2008.02.011 PubMedCrossRefGoogle Scholar
  72. Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 170:23–40Google Scholar
  73. R Development Core Team (2004) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  74. Raine NE, Chittka L (2007) The adaptive significance of sensory bias in a foraging context: floral colour preferences in the bumblebee Bombus terrestris. PLoS ONE 2:e556–e557. doi: 10.1371/journal.pone.0000556 PubMedCrossRefGoogle Scholar
  75. Raine NE, Ings TC, Dornhaus A, Saleh N, Chittka L (2006) Adaptation, genetic drift, pleiotropy, and history in the evolution of bee foraging behavior. Adv Stud Behav 36:305–354. doi: 10.1016/S0065-3454(06)36007-X CrossRefGoogle Scholar
  76. Rodriguez-Girones MA, Santamaria L (2004) Why are so many bird flowers red? PLoS Biol 2:1515–1519. doi: 10.1371/journal.pbio.0020350 CrossRefGoogle Scholar
  77. Savile DBO (1972) Arctic adaptations in plants. In: Canada Department of Agriculture, OttawaGoogle Scholar
  78. Silvertown J et al (2006) Absence of phylogenetic signal in the niche structure of meadow plant communities. Proc R Soc Lond B Biol Sci 273:39–44. doi: 10.1098/rspb.2005.3288 CrossRefGoogle Scholar
  79. Sison-Mangus MP, Bernard GD, Lampel J, Briscoe AD (2006) Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes. J Exp Biol 209:3079–3090. doi: 10.1242/jeb.02360 PubMedCrossRefGoogle Scholar
  80. Skorupski P, Döring TF, Chittka L (2007) Photoreceptor spectral sensitivity in island and mainland populations of the bumblebee, Bombus terrestris. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193:485–494PubMedCrossRefGoogle Scholar
  81. Sollid JL, Isaksen K, Eiken T, Ødegård RS (2003) The transition zone of mountain permafrost on Dovrefjell, southern Norway. In: 8th International Conference on Permafrost, vol. 1–2, Zürich, Switzerland, pp 1085–1089Google Scholar
  82. Soltis DE, Morgan DR, Grable A, Soltis PS, Kuzoff R (1993) Molecular systematics of Saxifragaceae sensu stricto. Am J Bot 80:1056–1081. doi: 10.2307/2445753 CrossRefGoogle Scholar
  83. Soltis PS, Soltis DE, Chase MW (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402–404. doi: 10.1038/46528 PubMedCrossRefGoogle Scholar
  84. Soltis DE et al (2001) Elucidating deep-level phylogenetic relationships in Saxifragaceae using sequences for six chloroplastic and nuclear DNA regions. Ann Mo Bot Gard 88:669–693. doi: 10.2307/3298639 CrossRefGoogle Scholar
  85. Swensen SM (1996) The evolution of actinorhizal symbioses: evidence for multiple origins of the symbiotic association. Am J Bot 83:1503–1512. doi: 10.2307/2446104 CrossRefGoogle Scholar
  86. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Inc., Sunderland, MAGoogle Scholar
  87. Tastard E, Andalo C, Giurfa M, Burrus M, Thébaud C (2008) Flower colour variation across a hybrid zone in Antirrhinum as perceived by bumblebee pollinators. Arthropod-Plant Interact 2:237–246. doi: 10.1007/s11829-008-9046-3 CrossRefGoogle Scholar
  88. Tokuoka T (2008) Molecular phylogenetic analysis of Violaceae (Malpighiales) based on plastid and nuclear DNA sequences. J Plant Res 121:253–260. doi: 10.1007/s10265-008-0153-0 PubMedCrossRefGoogle Scholar
  89. Totland Ø (1992) Pollination ecology in alpine plant communities in southern Norway: effect of abiotic and biotic factors on insect visitation and interspecific interactions. University of Bergen, NorwayGoogle Scholar
  90. Totland Ø (1993) Pollination in alpine Norway: flowering phenology, insect visitors, and visitation rates in two plant communities. Can J Bot 71:1072–1079Google Scholar
  91. Totland Ø, Eide W, Grytnes JA (2000) Is there a typical alpine flower? In: Totland Ø (ed) The Scandinavian association for pollination ecology honours Knut Fægri, vol 1. Det Norske Videnskaps-Akademi, Oslo, pp 139–148Google Scholar
  92. Trift I, Källersjö M, Anderberg AA (2002) The monophyly of Primula (Primulaceae) evaluated by analysis of sequences from the chloroplast gene rbcL. Syst Bot 27:396–407Google Scholar
  93. Troje N (1993) Spectral categories in the learning behaviour of blowflies. Z Naturforsch 48c:96–104Google Scholar
  94. Vázquez DP, Morris WF, Jordano P (2005) Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecol Lett 8:1088–1094. doi: 10.1111/j.1461-0248.2005.00810.x CrossRefGoogle Scholar
  95. Wagstaff SJ, Bayly MJ, Garnock-Jones PJ, Albach DC (2002) Classification, origin, and diversification of the New Zealand hebes (Scrophulariaceae). Ann Mo Bot Gard 89:38–63. doi: 10.2307/3298656 CrossRefGoogle Scholar
  96. Wang W, Li R-Q, Chen Z-D (2005) Systematic position of Asteropyrum (Ranunculaceae) inferred from chloroplast and nuclear sequences. Plant Syst Evol 255:41–54. doi: 10.1007/s00606-005-0339-z CrossRefGoogle Scholar
  97. Warren J, Mackenzie S (2001) Why are all colour combinations not equally represented as flower-colour polymorphisms? New Phytol 151:237–241. doi: 10.1046/j.1469-8137.2001.00159.x CrossRefGoogle Scholar
  98. Waser NM (1983) The adaptive nature of floral traits: ideas and evidence. In: Real LA (ed) Pollination biology. Academic Press, New York, pp 241–285Google Scholar
  99. Weevers T (1952) Flower colours and their frequency. Acta Bot Neerl 1:81–92Google Scholar
  100. West W, West GS (1910) Sketches of vegetation at home and abroad. V. The ecology of the Upper Driva Valley in the Dovrefjeld. New Phytol 9:353–374. doi: 10.1111/j.1469-8137.1910.tb05557.x CrossRefGoogle Scholar
  101. Whibley AC et al (2006) Evolutionary paths underlying flower color variation in Antirrhinum. Science 313:963–966. doi: 10.1126/science.1129161 PubMedCrossRefGoogle Scholar
  102. Yasui Y, Ohnishi O (1996) Comparative study of rbcL gene sequences in Fagopyrum and related taxa. Genes Genet Syst 71:219–224. doi: 10.1266/ggs.71.219 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Sarah E. J. Arnold
    • 1
  • Vincent Savolainen
    • 2
    • 3
  • Lars Chittka
    • 1
  1. 1.Research Centre for Psychology, School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
  2. 2.Royal Botanic GardensKew, RichmondUK
  3. 3.Imperial College LondonAscot, BerksUK

Personalised recommendations