Flower colour variation across a hybrid zone in Antirrhinum as perceived by bumblebee pollinators

  • Emmanuelle Tastard
  • Christophe Andalo
  • Martin Giurfa
  • Monique Burrus
  • Christophe Thébaud
Original Paper


To assess if pollinators’ behaviour could explain the maintenance of hybrid zones between different flower colour morphs, we analyzed flower colour variation in an Antirrhinum hybrid zone using spectrometry and a model of bee perception. Some colours generated by hybridization were not observed in any Antirrhinum species and even appeared to be rare among angiosperms. Variation in flower colours within the hybrid zone was continuous; the most similar colours were predicted not to be discriminated from one another in natural foraging situations. However, when compared at a scale corresponding to bees’ foraging range, some flower colours could be discriminated from all colours displayed by neighbouring plants. This could affect pollinator behaviour and explain lower visitation rates within the centre of the hybrid zone. Behavioural studies involving bumblebees and plant mixtures of parental and hybrid flower colours carefully characterized with appropriate visual models will be necessary to test this hypothesis.


Hybrid zone Flower colour Bee visual model Pollination ecology 



We thank M. Bernardet, F. Bourgeot, E. Coen, M. Cruzan, J. Leneveu, and A. Whibley for field assistance, and J. Benard for help with reflectance measurements. We also thank J. Chave, P. Heeb, and S. Ponsard for valuable comments on the manuscript. Financial support for this study was provided by CNRS and French Ministry of Research core funding to UMR 5174 CNRS-Université Paul Sabatier.

Supplementary material

11829_2008_9046_MOESM1_ESM.pdf (14 kb)
(PDF 14 kb)


  1. Arnold ML (1992) Natural hybridization as an evolutionary process. Annu Rev Ecol Syst 23:237–261. doi: 10.1146/annurev.es.23.110192.001321 CrossRefGoogle Scholar
  2. Atanassova B, Shtereva L, Molle E (1997) Effects of three anthocyaninless genes on germination in tomato (Lycopersicon esculentum Mill.) 2. Seed germination under stress conditions. Euphytica 97:31–38. doi: 10.1023/A:1003005921080 CrossRefGoogle Scholar
  3. Backhaus W, Menzel R (1987) Color distance derived from a receptor model of color vision in the honeybee. Biol Cybern 55:321–331CrossRefGoogle Scholar
  4. Barton NH (1979) The dynamics of hybrid zones. Heredity 43:341–359. doi: 10.1038/hdy.1979.87 CrossRefGoogle Scholar
  5. Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Annu Rev Ecol Syst 16:113–148. doi: 10.1146/annurev.es.16.110185.000553 CrossRefGoogle Scholar
  6. Bouck A, Wessler SR, Arnold ML (2007) QTL analysis of floral traits in Louisiana iris hybrids. Evolution 61:2308–2319. doi: 10.1111/j.1558-5646.2007.00214.x PubMedCrossRefGoogle Scholar
  7. Campbell DR, Waser NM, Meléndez-Ackerman EJ (1997) Analyzing pollinator-mediated selection in a plant hybrid zone: hummingbird visitation patterns on three spatial scales. Am Nat 149:295–315. doi: 10.1086/285991 CrossRefGoogle Scholar
  8. Campbell DR, Waser NM, Pederson GT (2002) Predicting patterns of mating and potential hybridization from pollinator behaviour. Am Nat 159:438–450. doi: 10.1086/339457 PubMedCrossRefGoogle Scholar
  9. Chittka L (1992) The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. J Comp Physiol A 170:533–543Google Scholar
  10. Chittka L (1997) Bee color vision is optimal for coding flower color, but flower colors are not optimal for being coded – Why? Isr J Plant Sci 45:115–127Google Scholar
  11. Chittka L, Spaethe J (2007) Visual search and the importance of time in complex decision making by bees. Arthropod-Plant Interact 1:37–44. doi: 10.1007/s11829-007-9001-8 CrossRefGoogle Scholar
  12. Chittka L, Beier W, Hertel H et al (1992) Opponent colour coding is a universal strategy to evaluate the photoreceptor inputs in Hymenoptera. J Comp Physiol A 170:545–563PubMedGoogle Scholar
  13. Chittka L, Shmida A, Troje N et al (1994) Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera. Vision Res 34:1489–1508. doi: 10.1016/0042-6989(94)90151-1 PubMedCrossRefGoogle Scholar
  14. Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology and plant evolution. Naturwissenschaften 86:361–377. doi: 10.1007/s001140050636 CrossRefGoogle Scholar
  15. Chittka L, Spaethe J, Schmidt A et al (2001) Adaptation, constraint, and chance in the evolution of flower color and pollinator color vision. In: Chittka L, Thomson JD (eds) Cognitive ecology of pollination: animal behaviour and floral evolution. Cambridge University Press, Cambridge, pp 106–126Google Scholar
  16. Clegg MT, Durbin ML (2000) Flower color variation: a model for the experimental study of evolution. Proc Natl Acad Sci USA 97:7016–7023. doi: 10.1073/pnas.97.13.7016 PubMedCrossRefGoogle Scholar
  17. Collevatti RG, Schoereder JH, Campos LAO (2000) Foraging behavior of bee pollinators on the tropical weed Triumfetta semitriloba: flight distance and directionality. Rev Bras Biol 60:29–37. doi: 10.1590/S0034-71082000000100005 PubMedCrossRefGoogle Scholar
  18. Daumer K (1956) Reizmetrische Untersuchungen des Farbensehens der Bienen. Z Vgl Physiol 38:413–478Google Scholar
  19. Dyer AG, Chittka L (2004a) Biological significance of distinguishing between similar colours in spectrally variable illumination: bumblebees (Bombus terrestris) as a case study. J Comp Physiol A 190:105–114. doi: 10.1007/s00359-003-0475-2 CrossRefGoogle Scholar
  20. Dyer AG, Chittka L (2004b) Fine colour discrimination requires differential conditioning in bumblebees. Naturwissenschaften 91:224–227. doi: 10.1007/s00114-004-0508-x PubMedCrossRefGoogle Scholar
  21. Dyer AG, Whitney HM, Arnold S et al (2007) Mutations perturbing petal cell shape and anthocyanin synthesis influence bumblebee perception of Antirrhinum majus flower colour. Arthropod-Plant Interact 1:45–55. doi: 10.1007/s11829-007-9002-7 CrossRefGoogle Scholar
  22. Dyer AG, Spaethe J, Prack S (2008) Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection. J Comp Physiol A 194:617–627. doi: 10.1007/s00359-008-0335-1 CrossRefGoogle Scholar
  23. Emms SK, Arnold ML (2000) Site-to-site differences in pollinator visitation patterns in a Louisiana iris hybrid zone. Oikos 91:568–578. doi: 10.1034/j.1600-0706.2000.910319.x CrossRefGoogle Scholar
  24. Endler JA (1977) Geographic variation, speciation and clines. Princeton University Press, PrincetonGoogle Scholar
  25. Giurfa M (1991) Colour generalization and choice behaviour of the honeybee Apis mellifera ligustica. J Insect Physiol 37:41–44. doi: 10.1016/0022-1910(91)90017-T CrossRefGoogle Scholar
  26. Giurfa M (2004) Conditioning procedure and color discrimination in the honeybee Apis mellifera. Naturwissenschaften 91:228–231. doi: 10.1007/s00114-004-0530-z PubMedCrossRefGoogle Scholar
  27. Giurfa M, Vorobyev M (1997) The detection and recognition of color stimuli by honeybees: performance and mechanisms. Isr J Plant Sci 45:129–140Google Scholar
  28. Giurfa M, Vorobyev M, Kevan P et al (1996) Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. J Comp Physiol A 178:699–709. doi: 10.1007/BF00227381 CrossRefGoogle Scholar
  29. Gumbert A (2000) Color choices by bumble bees (Bombus terrestris): innate preferences and generalization after learning. Behav Ecol Sociobiol 48:36–43. doi: 10.1007/s002650000213 CrossRefGoogle Scholar
  30. Ippolito A, Fernandes GW, Holtsford TP (2004) Pollinator preferences for Nicotiana alata, N. forgetiana, and their F1 hybrids. Evolution 58:2634–2644PubMedGoogle Scholar
  31. Lunau K (1990) Colour saturation triggers innate reactions to flower signals: flower dummy experiments with bumblebees. J Comp Physiol A 166:827–834. doi: 10.1007/BF00187329 CrossRefGoogle Scholar
  32. Lunau K, Wacht S, Chittka L (1996) Colour choices of naïve bumble bees and their implications for colour perception. J Comp Physiol A 178:477–489. doi: 10.1007/BF00190178 CrossRefGoogle Scholar
  33. Mayr E (1963) Animal species and evolution. Harvard University Press, CambridgeGoogle Scholar
  34. Meléndez-Ackerman EJ (1997) Patterns of color and nectar variation across an Ipomopsis (Polemoniaceae) hybrid zone. Am J Bot 84:41–47. doi: 10.2307/2445881 CrossRefGoogle Scholar
  35. Meléndez-Ackerman E, Campbell DR, Waser NM (1997) Hummingbird behavior and mechanisms of selection on flower color in Ipomopsis. Ecology 78:2532–2541Google Scholar
  36. Menzel R, Backhaus W (1991) Colour vision in insects. In: Gouras P (ed) Vision and visual dysfunction, vol VI, the perception of colour. MacMillan Press, Houndsmills, pp 262–293Google Scholar
  37. Peitsch D, Fietz A, Hertel H et al (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40. doi: 10.1007/BF00190398 PubMedCrossRefGoogle Scholar
  38. Rick CM, Smith PG (1953) Novel variation in tomato species hybrids. Am Nat 87:359–373. doi: 10.1086/281796 CrossRefGoogle Scholar
  39. Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83:363–372. doi: 10.1038/sj.hdy.6886170 PubMedCrossRefGoogle Scholar
  40. Saks L, McGraw K, Hõrak P (2003) How feather colour reflects its carotenoid content. Funct Ecol 17:555–561. doi: 10.1046/j.1365-2435.2003.00765.x CrossRefGoogle Scholar
  41. Saleh N, Chittka L (2007) Traplining in bumblebees (Bombus impatiens): a foraging strategy’s ontogeny and the importance of spatial reference memory in short range foraging. Oecologia 151:719–730. doi: 10.1007/s00442-006-0607-9 PubMedCrossRefGoogle Scholar
  42. Schemske DW, Bradshaw HD (1999) Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc Natl Acad Sci USA 96:11910–11915. doi: 10.1073/pnas.96.21.11910 PubMedCrossRefGoogle Scholar
  43. Schwinn K, Venail J, Shang Y et al (2006) A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in genus Antirrhinum. Plant Cell 18:831–851. doi: 10.1105/tpc.105.039255 PubMedCrossRefGoogle Scholar
  44. Smithson A, Macnair MR (1996) Frequency-dependent selection by pollinators: mechanisms and consequences with regard to behaviour of bumblebees Bombus terrestris (L.) (Hymenoptera: Apidae). J Evol Biol 9:571–588. doi: 10.1046/j.1420-9101.1996.9050571.x CrossRefGoogle Scholar
  45. Smithson A, Macnair MR (1997) Density-dependent and frequency-dependent selection by bumblebees Bombus terrestris (L.) (Hymenoptera: Apidae). Biol J Linn Soc Lond 60:401–417Google Scholar
  46. Stebbins GL (1959) The role of hybridization in evolution. Proc Am Philos Soc 103:231–251Google Scholar
  47. Streisfeld MA, Kohn JR (2005) Contrasting patterns of floral and molecular variation across a cline in Mimulus aurantiacus. Evolution 59:2548–2559PubMedGoogle Scholar
  48. Stubbe H (1966) Genetik und Zytologie von Antirrhinum L. Sect. Antirrhinum. VEB Gustav Fisher Verlag, JenaGoogle Scholar
  49. von Helverson O (1972) Zur spektralen Unterschiedlichkeitsempfindlichkeit der Honigbiene. J Comp Physiol 80:439–472. doi: 10.1007/BF00696438 CrossRefGoogle Scholar
  50. Warren J, Mackenzie S (2001) Why are all colour combinations not equally represented as flower-colour polymorphisms. New Phytol 151:237–241. doi: 10.1046/j.1469-8137.2001.00159.x CrossRefGoogle Scholar
  51. Waser NM (1982) A comparison of distances flown by different visitors to flowers of the same species. Oecologia 55:251–257. doi: 10.1007/BF00384496 CrossRefGoogle Scholar
  52. Wesselingh RA, Arnold ML (2000) Pollinator behaviour and the evolution of Louisiana iris hybrid zones. J Evol Biol 13:171–180. doi: 10.1046/j.1420-9101.2000.00153.x CrossRefGoogle Scholar
  53. Whibley AC (2004) Molecular and genetic variation underlying the evolution of flower colour in Antirrhinum. Unpublished PhD thesis, University of East Anglia. John Innes Centre, Norwich, UKGoogle Scholar
  54. Whibley AC, Langlade NB, Andalo C et al (2006) Evolutionary paths underlying flower color variation in Antirrhinum. Science 313:963–966. doi: 10.1126/science.1129161 PubMedCrossRefGoogle Scholar
  55. Whitney HM, Glover BJ (2007) Morphology and development of floral features recognised by pollinators. Arthropod-Plant Interact 1:147–158. doi: 10.1007/s11829-007-9014-3 CrossRefGoogle Scholar
  56. Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice-Hall, LondonGoogle Scholar
  57. Zimmerman M (1981) Optimal foraging, plant density and the marginal value theorem. Oecologia 49:148–153. doi: 10.1007/BF00349181 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Emmanuelle Tastard
    • 1
  • Christophe Andalo
    • 1
  • Martin Giurfa
    • 2
  • Monique Burrus
    • 1
  • Christophe Thébaud
    • 1
  1. 1.Laboratoire Evolution et Diversité BiologiqueUMR 5174, CNRS-Université Paul SabatierToulouse cedex 9France
  2. 2.Centre de Recherches sur la Cognition AnimaleUMR 5169, CNRS-Université Paul SabatierToulouse cedex 9France

Personalised recommendations