medizinische genetik

, Volume 26, Issue 2, pp 246–254 | Cite as

Exomsequenzierung zur Identifizierung von Krankheitsgenen für seltene Syndrome

Erfahrungen aus Hamburg, Deutschland
  • F. Kortüm
  • H. Abdollahpour
  • M. Alawi
  • G.C. Korenke
  • E. Seemanova
  • S. Tinschert
  • M. Zenker
  • G. Rosenberger
  • K. Kutsche
Schwerpunkt
  • 238 Downloads

Zusammenfassung

Hintergrund

Die Exomanalyse ist als Methode zur Identifizierung von pathogenen Sequenzvarianten bei Patienten mit einem nach den mendelschen Regeln vererbten Krankheitsbild nicht mehr wegzudenken. Sie bildet umfassend die codierenden Sequenzen eines Genoms ab und ist schnell und kostengünstig.

Problemstellung

Da die technischen Schwierigkeiten bei der Durchführung der Exomsequenzierung inzwischen weitgehend gelöst sind, stellt die Auswertung der großen Datenmenge und somit das Finden der pathogenen Sequenzvariante inmitten 10.000er Sequenzabweichungen die eigentliche Herausforderung dar. Dies kann nur mithilfe einer bioinformatischen Filterung der Daten erfolgen, die jeweils unter Berücksichtigung der in die Analyse einbezogenen Patienten und Familienmitglieder sowie des wahrscheinlichsten Erbganges angepasst werden muss.

Lösungsansätze

Anhand von 4 Fallbeispielen werden verschiedene Priorisierungsstrategien für die Filterung der Sequenzvarianten vorgestellt, die jeweils zur Identifikation der wahrscheinlich pathogenen Veränderung bei dem jeweiligen Indexpatienten geführt haben.

Schlüsselwörter

Hochdurchsatznukleotidsequenzierung Exom Variantenpriorisierung Mendelsche Krankheit Molekulare Diagnostik 

Exome sequencing for identification of disease genes for rare syndromes

Experience from Hamburg, Germany

Abstract

Background

Whole exome sequencing (WES) is the state-of-the-art method for identification of pathogenic mutations in patients with a Mendelian disorder. WES comprehensively covers the coding sequence of the genome and is a fast and cost-effective technique.

Purpose

As most of the technical difficulties have been overcome for WES, the major issue is data processing and analysis to find the pathogenic sequence variation among tens of thousands of sequence changes. Bioinformatic analysis pipelines for filtering sequence variants have to be adapted according to the patients and family members examined by WES and the most likely inheritance pattern underlying the disease.

Possible approaches

Based on 4 cases, different variant prioritization strategies which led to identification of the most likely causative changes in the index patients are described.

Keywords

High-throughput nucleotide sequencing Exome Variant prioritization Mendelian disorder Molecular diagnostics 

Literatur

  1. 1.
    Abdollahpour H, Alawi M, Kortüm F et al (2014) An AP4B1 frameshift mutation in siblings with intellectual disability and spastic tetraplegia further delineates the AP-4 deficiency syndrome. Eur J Hum Genet (Epub ahead of print)Google Scholar
  2. 2.
    Abou Jamra R, Philippe O, Raas-Rothschild A et al (2011) Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature. Am J Hum Genet 88:788–795CrossRefGoogle Scholar
  3. 3.
    Aoki Y, Niihori T, Kawame H et al (2005) Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet 37:1038–1040PubMedCrossRefGoogle Scholar
  4. 4.
    Arif B, Kumar KR, Seibler P et al (2013) A novel OPA3 mutation revealed by exome sequencing: an example of reverse phenotyping. JAMA Neurol 70:783–787PubMedCrossRefGoogle Scholar
  5. 5.
    Bamshad MJ, Ng SB, Bigham AW et al (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12:745–755PubMedCrossRefGoogle Scholar
  6. 6.
    Bauer P, Leshinsky-Silver E, Blumkin L et al (2012) Mutation in the AP4B1 gene cause hereditary spastic paraplegia type 47 (SPG47). Neurogenetics 13:73–76PubMedCrossRefGoogle Scholar
  7. 7.
    Baumgartner MR, Hu CA, Almashanu S et al (2000) Hyperammonemia with reduced ornithine, citrulline, arginine and proline: a new inborn error caused by a mutation in the gene encoding delta(1)-pyrroline-5-carboxylate synthase. Hum Mol Genet 9:2853–2858PubMedCrossRefGoogle Scholar
  8. 8.
    Bicknell LS, Pitt J, Aftimos S et al (2008) A missense mutation in ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), causes an autosomal recessive neurocutaneous syndrome. Eur J Hum Genet 16:1176–1186PubMedCrossRefGoogle Scholar
  9. 9.
    Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE (2013) Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 14:681–691PubMedCrossRefGoogle Scholar
  10. 10.
    Carr CM, Rizo J (2010) At the junction of SNARE and SM protein function. Curr Opin Cell Biol 22:488–495PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Choi M, Scholl UI, Ji W et al (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A 106:19096–19101PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Dell’Angelica EC, Mullins C, Bonifacino JS (1999) AP-4, a novel protein complex related to clathrin adaptors. J Biol Chem 274:7278–7285CrossRefGoogle Scholar
  13. 13.
    Endele S, Rosenberger G, Geider K et al (2010) Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet 42:1021–1026PubMedCrossRefGoogle Scholar
  14. 14.
    Ganley IG, Espinosa E, Pfeffer SR (2008) A syntaxin 10-SNARE complex distinguishes two distinct transport routes from endosomes to the trans-Golgi in human cells. J Cell Biol 180:159–172PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Gargis AS, Kalman L, Berry MW et al (2012) Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat Biotechnol 30:1033–1036PubMedCrossRefGoogle Scholar
  16. 16.
    Hirst J, Bright NA, Rous B, Robinson MS (1999) Characterization of a fourth adaptor-related protein complex. Mol Biol Cell 10:2787–2802PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Ku CS, Naidoo N, Pawitan Y (2011) Revisiting Mendelian disorders through exome sequencing. Hum Genet 129:351–370PubMedCrossRefGoogle Scholar
  18. 18.
    Kutsche K, Yntema H, Brandt A et al (2000) Mutations in ARHGEF6, encoding a guanine nucleotide exchange factor for Rho GTPases, in patients with X-linked mental retardation. Nat Genet 26:247–250PubMedCrossRefGoogle Scholar
  19. 19.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Li H, Handsaker B, Wysoker A et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Lim YH, Ovejero D, Sugarman JS et al (2014) Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated FGF23 and hypophosphatemia. Hum Mol Genet 23:397–407PubMedCrossRefGoogle Scholar
  22. 22.
    Lindhurst MJ, Parker VE, Payne F et al (2012) Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA. Nat Genet 44:928–933PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Majewski J, Schwartzentruber J, Lalonde E et al (2011) What can exome sequencing do for you? J Med Genet 48:580–589PubMedCrossRefGoogle Scholar
  24. 24.
    Maroti Z, Kutsche K, Sutajova M et al (2002) Refinement and delineation of the breakpoint regions of a chromosome 1;22 translocation in a patient with Costello syndrome. Am J Med Genet 109:234–237PubMedCrossRefGoogle Scholar
  25. 25.
    McKenna A, Hanna M, Banks E et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Najm J, Horn D, Wimplinger I et al (2008) Mutations of CASK cause an X-linked brain malformation phenotype with microcephaly and hypoplasia of the brainstem and cerebellum. Nat Genet 40:1065–1067PubMedCrossRefGoogle Scholar
  27. 27.
    Perez-Arellano I, Carmona-Alvarez F, Martinez AI et al (2010) Pyrroline-5-carboxylate synthase and proline biosynthesis: from osmotolerance to rare metabolic disease. Protein Sci 19:372–382PubMedCentralPubMedGoogle Scholar
  28. 28.
    Pfeiffer RA, Seemanova E, Suss J et al (1992) The Zimmermann-Laband syndrome. Klin Padiatr 204:1–5PubMedCrossRefGoogle Scholar
  29. 29.
    Rehm HL, Bale SJ, Bayrak-Toydemir P et al (2013) ACMG clinical laboratory standards for next-generation sequencing. Genet Med 15:733–747PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Riviere JB, Mirzaa GM, O’Roak BJ et al (2012) De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet 44:934–940PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Schulz AL, Albrecht B, Arici C et al (2008) Mutation and phenotypic spectrum in patients with cardio-facio-cutaneous and Costello syndrome. Clin Genet 73:62–70PubMedCrossRefGoogle Scholar
  32. 32.
    Skidmore DL, Chitayat D, Morgan T et al (2011) Further expansion of the phenotypic spectrum associated with mutations in ALDH18A1, encoding Delta(1)-pyrroline-5-carboxylate synthase (P5CS). Am J Med Genet 155A:1848–1856PubMedCrossRefGoogle Scholar
  33. 33.
    Sutajova M, Neukirchen U, Meinecke P et al (2004) Disruption of the PDGFB gene in a 1;22 translocation patient does not cause Costello syndrome. Genomics 83:883–892PubMedCrossRefGoogle Scholar
  34. 34.
    Tang BL, Low DY, Tan AE, Hong W (1998) Syntaxin 10: a member of the syntaxin family localized to the trans-Golgi network. Biochem Biophys Res Commun 242:345–350PubMedCrossRefGoogle Scholar
  35. 35.
    Topper S, Ober C, Das S (2011) Exome sequencing and the genetics of intellectual disability. Clin Genet 80:117–126PubMedCrossRefGoogle Scholar
  36. 36.
    Van Houdt JK, Nowakowska BA, Sousa SB et al (2012) Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome. Nat Genet 44:445–449, S441CrossRefGoogle Scholar
  37. 37.
    Vissers LE, Fano V, Martinelli D et al (2011) Whole-exome sequencing detects somatic mutations of IDH1 in metaphyseal chondromatosis with D-2-hydroxyglutaric aciduria (MC-HGA). Am J Med Genet 155A:2609–2616PubMedCrossRefGoogle Scholar
  38. 38.
    Weiss MM, Van der Zwaag B, Jongbloed JD et al (2013) Best practice guidelines for the use of next-generation sequencing applications in genome diagnostics: a national collaborative study of Dutch genome diagnostic laboratories. Hum Mutat 34:1313–1321PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • F. Kortüm
    • 1
  • H. Abdollahpour
    • 1
    • 2
  • M. Alawi
    • 3
    • 4
  • G.C. Korenke
    • 5
  • E. Seemanova
    • 6
  • S. Tinschert
    • 7
    • 8
  • M. Zenker
    • 9
  • G. Rosenberger
    • 1
  • K. Kutsche
    • 1
  1. 1.Institut für HumangenetikUniversitätsklinikum Hamburg-EppendorfHamburgDeutschland
  2. 2.Aktuelle Adresse: MVZ genteQ GmbHHamburgDeutschland
  3. 3.Bioinformatics Service FacilityUniversitätsklinikum Hamburg-EppendorfHamburgDeutschland
  4. 4.Leibniz-Institut für Experimentelle Virologie, Virus GenomikHeinrich-Pette-InstitutHamburgDeutschland
  5. 5.Zentrum für Kinder- und Jugendmedizin, NeuropädiatrieKlinikum OldenburgOldenburgDeutschland
  6. 6.Department of Clinical Genetics, Institute of Biology and Medical GeneticsUniversity Hospital Motol, Second Medical School, Charles University PraguePragueTschechische Republik
  7. 7.Sektion für Humangenetik, Department für Medizinische Genetik, Molekulare und Klinische PharmakologieMedizinische Universität InnsbruckInnsbruckÖsterreich
  8. 8.Institut für Klinische GenetikMedizinische Fakultät Carl Gustav Carus, TU DresdenDresdenDeutschland
  9. 9.Institut für HumangenetikOtto-von-Guericke-Universität MagdeburgMagdeburgDeutschland

Personalised recommendations