medizinische genetik

, Volume 22, Issue 4, pp 411–418 | Cite as

Transienter neonataler Diabetes und Hypomethylierungssyndrome

Schwerpunkt
  • 96 Downloads

Zusammenfassung

Der transiente neonatale Diabetes (TNDM) ist definiert als Manifestation einer diabetogenen Stoffwechsellage in den ersten Lebenswochen und Normalisierung des Glukosestoffwechsels bis zum 18. Lebensmonat. Zu den klinischen Kardinalsymptomen zählen intrauterine Wachstumsverzögerung, Hyperglykämie und Dehydratation bei fehlender Ketoazidose. Die Ätiologie des TNDM ist sehr heterogen. In 70% der Fälle ist die Erkrankung mit Aberrationen in der Chromosomenregion 6q24 assoziiert. Diese Chromosomenregion enthält die genomisch geprägten Gene PLAGL1/ZAC und HYMAI. Durch eine paternale uniparentale Disomie 6 (upd(6)pat), eine paternale Duplikation der geprägten Region in 6q24 oder durch Imprintingdefekte des maternalen Allels kommt es zu einer Überexpression des paternal exprimierten Gens PLAGL1. Imprintingdefekte können isoliert oder im Rahmen eines Hypomethylierungssyndroms mit Beteiligung mehrerer geprägter Loci des Genoms auftreten. Hypomethylierung an multiplen Loci wurde bis jetzt bei Patienten mit TNDM, Silver-Russell-Syndrom (SRS) und Beckwith-Wiedemann-Syndrom (BWS) beobachtet. Das Wiederholungsrisiko hängt wesentlich von der Ursache des TNDM an. Chromosomale Aberrationen der Eltern unter Beteiligung des Chromosoms 6 erhöhen das Risiko sowohl für eine UPD des geprägten Bereichs in 6q24 als auch für eine paternale Duplikation. Jedoch entstehen sowohl UPD als auch Duplikationen zumeist de novo.

Schlüsselwörter

Genomische Prägung Humanes PLAGL1-Protein Beckwith-Wiedemann-Syndrom Silver-Russell-Syndrom Blasenmole 

Transient neonatal diabetes and hypomethylation syndromes

Abstract

Transient neonatal diabetes (TNDM) is manifested before the age of 6 weeks and typically resolves within 18 months. Main clinical features include intrauterine growth retardation, hyperglycemia and dehydration with absent ketoacidosis. Causes of TNDM are heterogeneous but 70% are due to a chromosomal aberration in the region 6q24 which contains the imprinted genes PLAGL1/ZAC and HYMAI. Paternal uniparental disomy 6 (upd(6)pat) or paternal duplications of the imprinted region as well as imprinting defects of the maternal allele all result in an overexpression of the paternally expressed gene PLAGL1. Imprinting defects in 6q24 can occur as isolated events or can affect more than one locus (hypomethylation syndrome). Hypomethylation at multiple loci has so far been observed in patients with TNDM, Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS).The risk of recurrence depends on the underlying cause of TNDM. Chromosomal aberrations in the parents affecting chromosome 6 increase the risk for UPD or duplication of the imprinted locus in 6q24. Nevertheless, UPD and duplication 6q24 are mostly de novo occurrences.

Keywords

Genomic imprinting PLAGL1 protein, human Beckwith-Wiedemann syndrome Silver-Russell syndrome Hydatidiform mole 

Notes

Danksagung

Die eigenen Arbeiten der Autoren zu TNDM und zu Störungen der Methylierung als Ursache von Fehlbildungs-Retardierungs-Syndromen werden gefördert durch das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Netzwerks „Imprintingstörungen“ (FKZ: 01GM0886), im Rahmen des Exzellenzclusters „Inflammation at Interfaces“ und durch die Medizinische Fakultät der Christian-Albrechts-Universität zu Kiel. Die Autoren bedanken sich für anregende Hinweise von K. Temple und D. Mackay (University of Southampton, Großbritannien).

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Polak M, Shield J (2004) Neonatal and very-early-onset diabetes mellitus. Semin Neonatol 9:59–65CrossRefPubMedGoogle Scholar
  2. 2.
    Wiedemann B, Schober E, Waldhoer T et al (2010) Incidence of neonatal diabetes in Austria – calculation based on the Austrian Diabetes Register. Pediatr Diabetes 11:18–23CrossRefPubMedGoogle Scholar
  3. 3.
    Ramsey WR (1926) Glycosuria of the newborn treated with insulin. Trans Am Pediatr Soc 38:100–101Google Scholar
  4. 4.
    Cornblath M, Schwartz R (1966) Disorders of carbohydrate metabolism: major problems in clinical paediatrics. Saunders, Philadelphia 3:105–112Google Scholar
  5. 5.
    Briggs JR (1986) Permanent non-insulin dependent diabetes mellitus after congenital transient neonatal diabetes. Scott Med J 31:41–42PubMedGoogle Scholar
  6. 6.
    Mühlendorf KE von, Herkenhoff H (1995) Long-term course of neonatal diabetes. N Engl J Med 333:704–708CrossRefGoogle Scholar
  7. 7.
    Temple IK, Gardner RJ, Mackay DJG et al (2000) Transient neonatal diabetes: widening the understanding of the etiopathogenesis of diabetes. Diabetes 49:1359–1366CrossRefPubMedGoogle Scholar
  8. 8.
    Shield JP, Temple IK, Sabin M et al (2004) An assessment of pancreatic endocrine function and insulin sensitivity in patients with transient neonatal diabetes in remission. Arch Dis Child Fetal Neonatal Ed 89:F341–F343CrossRefPubMedGoogle Scholar
  9. 9.
    Boonen SE, Pörksen S, Mackay DJG et al (2008) Clinical characterisation of the multiple maternal hypomethylation syndrome in siblings. Eur J Hum Genet 16:453–461CrossRefPubMedGoogle Scholar
  10. 10.
    Mackay DJG, Callaway J, Marks SM et al (2008) Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet 40:949–951CrossRefPubMedGoogle Scholar
  11. 11.
    Mackay DJG, Boonen SE, Clayton-Smith J et al (2006) A maternal hypomethylation syndrome presenting as transient neonatal diabetes mellitus. Hum Genet 120:262–269CrossRefPubMedGoogle Scholar
  12. 12.
    Flanagan S, Patch A, Mackay DJG et al (2007) Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes 56:1930–1937CrossRefPubMedGoogle Scholar
  13. 13.
    Mackay DJG, Coupe AM, Shield JP et al (2002) Relaxation of imprinted expression of ZAC and HYMAI in a patient with transient neonatal diabetes mellitus. Hum Genet 110:139–144CrossRefPubMedGoogle Scholar
  14. 14.
    Varrault A, Ciani E, Apiou F et al (1998) hZAC encodes a zinc finger protein with antiproliferative properties and maps to a chromosomal region frequently lost in cancer. Proc Natl Acad Sci U S A 95:8835–8840CrossRefPubMedGoogle Scholar
  15. 15.
    Temple IK, Shield JP (2002) Transient neonatal diabetes, a disorder of imprinting. J Med Genet 39:872–875CrossRefPubMedGoogle Scholar
  16. 16.
    Ma D, Shield JP, Dean W et al (2004) Impaired glucose homeostasis in transgenic mice expressing the human transient neonatal diabetes mellitus locus, TNDM. J Clin Invest 114:339–348PubMedGoogle Scholar
  17. 17.
    Hattersley AT (2004) Unlocking the secrets of the pancreatic beta cell: man and mouse provide the key. J Clin Invest 114:314–316PubMedGoogle Scholar
  18. 18.
    Gloyn AL, Pearson ER, Antcliff JF et al (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350:1838–1849CrossRefPubMedGoogle Scholar
  19. 19.
    Proks P, Shimomura K, Craig TJ et al (2007) Mechanism of action of a sulphonylurea receptor SUR1 mutation (F132L) that causes DEND syndrome. Hum Mol Genet 16:2011–2019CrossRefPubMedGoogle Scholar
  20. 20.
    Gloyn AL, Reimann F, Girard CA et al (2005) Relapsing diabetes can result from moderately activating mutations in KCNJ11. Hum Mol Genet 14:925–934CrossRefPubMedGoogle Scholar
  21. 21.
    Gloyn AL, Diatloff-Zito C, Edghill EL et al (2006) KCNJ11 activating mutations are associated with developmental delay, epilepsy and neonatal diabetes syndrome and other neurological features. Eur J Hum Genet 14:824–830CrossRefPubMedGoogle Scholar
  22. 22.
    Edghill EL, Bingham C, Slingerland AS et al (2006) Hepatocyte nuclear factor-1 beta mutations cause neonatal diabetes and intrauterine growth retardation: support for a critical role of HNF-1beta in human pancreatic development. Diabet Med 23:1301–1306CrossRefPubMedGoogle Scholar
  23. 23.
    Arima T, Kamikihara T, Hayashida T et al (2005) ZAC, LIT1 (KCNQ1OT1) and p57KIP2 (CDKN1C) are in an imprinted gene network that may play a role in Beckwith-Wiedemann syndrome. Nucleic Acids Res 33:2650–2660CrossRefPubMedGoogle Scholar
  24. 24.
    Rossignol S, Steunou V, Chalas C et al (2006) The epigenetic imprinting defect of patients with Beckwith-Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region. J Med Genet 43:902–907CrossRefPubMedGoogle Scholar
  25. 25.
    Bliek J, Verde G, Callaway J et al (2009) Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith-Wiedemann syndrome. Eur J Hum Genet 17:611–619CrossRefPubMedGoogle Scholar
  26. 26.
    Azzi S, Rossignol S, Steunou V et al (2009) Multilocus methylation analysis in a large cohort of 11p15-related foetal growth disorders (Russell-Silver and Beckwith-Wiedemann syndromes) reveals simultaneous loss of methylation at paternal and maternal imprinted loci. Hum Mol Genet 18:4724–4733CrossRefPubMedGoogle Scholar
  27. 27.
    Lim D, Bowdin SC, Tee L et al (2009) Clinical and molecular genetic features of Beckwith-Wiedemann syndrome associated with assisted reproductive technologies. Hum Reprod 24:741–747CrossRefPubMedGoogle Scholar
  28. 28.
    Spengler S, Gogiel M, Schönherr N et al (2009) Screening for genomic variants in ZFP57 in Silver-Russell syndrome patients with 11p15 epimutations. Eur J Med Genet 52:415–416CrossRefPubMedGoogle Scholar
  29. 29.
    Begemann M, Spengler S, Kanber D et al (2010) Silver-Russell patients showing a broad range of ICR1 and ICR2 hypomethylation in different tissues. Clin Genet: 22 July Epub ahead of printGoogle Scholar
  30. 30.
    Wang CM, Dixon PH, Decordova S et al (2009) Identification of 13 novel NLRP7 mutations in 20 families with recurrent hydatidiform mole; missense mutations cluster in the leucine-rich region. J Med Genet 46:569–575CrossRefPubMedGoogle Scholar
  31. 31.
    Meyer E, Lim D, Pasha S et al (2009) Germline mutations in NLRP2 (NALP2) in a familial imprinting disorder (Beckwith-Wiedemann syndrome). PLoS Genet 5:e1000423CrossRefPubMedGoogle Scholar
  32. 32.
    Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610CrossRefPubMedGoogle Scholar
  33. 33.
    Temple IK, Mackay DJG (2005) Diabetes mellitus, 6q24-related transient neonatal: chromosome 6-associated transient diabetes mellitus, TNDM. Gene Reviews, University of Washington, Seattle/WA, PMID: 20301706. http://www.ncbi.nlm.nih.gov/bookshelfbr.fcgi?book=gene&part=dmtn#dmtn.REF.shield.2004.F341Google Scholar
  34. 34.
    Holterhus PM et al (2009) Diagnostik, Therapie und Verlaufskontrolle des Diabetes mellitus im Kindes- und Jugendalter: Aktualisierung 2009 – Version 1.0. Deutsche Diabetes-Gesellschaft/diabetesDE, Kirchheim, Mainz. http://www.diabetes-kinder.de/modularx/include/module/dateimanager/data/leitlinie-kinderdiabetologie-2009.pdfGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institut für HumangenetikChristian-Albrechts-Universität zu Kiel & Universitätsklinikum Schleswig-Holstein, Campus KielKielDeutschland

Personalised recommendations