Advertisement

medizinische genetik

, Volume 20, Issue 4, pp 407–415 | Cite as

Neue Verfahren für Einzelzellanalysen in Forschung und Diagnostik

  • J. Geigl
  • M. Speicher
Schwerpunkt
  • 72 Downloads

Zusammenfassung

Die traditionelle Zytogenetik ist ein Paradebeispiel für eine Einzelzelldiagnostik, weil mit jeder gebänderten Metaphase das gesamte Genom einer Zelle – bei relativ niedriger Auflösung – untersucht wird. Dies repräsentierte über mehrere Jahrzehnte einen wichtigen Unterschied zu molekulargenetischen Untersuchungstechniken, die in der Mehrheit der Fälle auf DNA oder RNA basieren, die aus hunderten oder tausenden von Zellen extrahiert wurden. Viele Fragestellungen können jedoch nur durch Analysen auf dem Niveau einzelner oder weniger Zellen beantwortet werden. Deshalb wurden besonders in den letzten Jahren neue Einzelzelltechniken mit dem Ziel entwickelt, immer mehr Loci mit verbessertem Auflösungsvermögen simultan analysieren zu können. In dieser Übersichtsarbeit werden die diesbezüglich wichtigsten Entwicklungen der letzten Jahre zusammengefasst.

Schlüsselwörte

Einzelzellanalyse Gleichmäßige Gesamtgenomamplifikation Vergleichende genomische Hybridisierung (CGH) Copy number variation (CNV) Auflösungsvermögen 

New methods of single-cell analysis in research and diagnostics

Abstract

Traditional cytogenetics is a paradigm for single-cell diagnostics; after a banding procedure, each metaphase examined represents the analysis of an entire genome of a cell, albeit at a low resolution. For several decades, this single-cell character has represented an important distinction in molecular genetics technologies, which are mostly based on DNA or RNA extracted from hundreds or thousands of cells. However, many essential questions can be addressed only by analyzing cells on the level of fewer or single cells. In the last few years, new single-cell techniques have been developed with the aim to simultaneously examine more regions with improved resolution. In this overview we summarize the most important recent developments and changes.

Keywords

Single-cell analysis Unbiased whole-genome amplification Comparative genomic hybridization (CGH) Copy number variation (CNV) Resolution limits 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Allison M (2008) Is personalized medicine finally arriving? Nat Biotechnol 26: 509–517PubMedCrossRefGoogle Scholar
  2. 2.
    Braun S, Vogl FD, Naume B et al. (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353: 793–802PubMedCrossRefGoogle Scholar
  3. 3.
    Bruder CE, Piotrowski A, Gijsbers AA et al. (2008) Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am J Hum Genet 82: 763–771 PubMedCrossRefGoogle Scholar
  4. 4.
    Cremer M, Müller S, Solovei I et al. (2008) 3D-Fluoreszenz-in-situ Hybridisierung und Zellkernarchitektur. Med Genet 4Google Scholar
  5. 5.
    Döhner H, Stilgenbauer S, Benner A et al. (2000) Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343: 1910–1916PubMedCrossRefGoogle Scholar
  6. 6.
    Fiegler H, Geigl JB, Langer S et al. (2007) High resolution array-CGH analysis of single cells. Nucleic Acids Res 35: e15PubMedCrossRefGoogle Scholar
  7. 7.
    Fuhrmann C, Schmidt-Kittler O, Stoecklein NH et al. (2008) High-resolution array comparative genomic hybridization of single micrometastatic tumor cells. Nucleic Acids Res 36: e39PubMedCrossRefGoogle Scholar
  8. 8.
    Gangnus R, Langer S, Breit E et al. (2004) Genomic profiling of viable and proliferative micrometastatic cells from early-stage breast cancer patients. Clin Cancer Res 10: 3457–3464PubMedCrossRefGoogle Scholar
  9. 9.
    Geigl JB, Speicher MR (2007) Single-cell isolation from cell suspensions and whole genome amplification from single cells to provide templates for CGH analysis. Nat Protocols 2: 3173–3184CrossRefGoogle Scholar
  10. 10.
    Geigl JB, Obenauf AC, Schwarzbraun T et al. (2008) Defining ‚chromosomal instability’. Trends Genet 24: 64–69PubMedCrossRefGoogle Scholar
  11. 11.
    Hu DG, Webb G, Hussey N (2004) Aneuploidy detection in single cells using DNA array-based comparative genomic hybridization. Mol Hum Reprod 10: 283–289 PubMedCrossRefGoogle Scholar
  12. 12.
    Hüsemann Y, Geigl JB, Schubert F et al. (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13: 58–68PubMedCrossRefGoogle Scholar
  13. 13.
    Iafrate AJ, Feuk L, Rivera MN et al. (2004) Detection of large-scale variation in the human genome. Nat Genet 36: 949–951PubMedCrossRefGoogle Scholar
  14. 14.
    Klein CA, Schmidt-Kittler O, Schardt JA (1999) Comparative genomic hybridization, loss of heterozygosity and DNA sequence analysis of single cells. Proc Natl Acad Sci USA 96: 4494–4499PubMedCrossRefGoogle Scholar
  15. 15.
    Langer S, Geigl JB, Gangnus R et al. (2005) Sequential application of interphase-FISH and CGH to single cells. Lab Invest 85: 582–592PubMedCrossRefGoogle Scholar
  16. 16.
    Le Caignec C, Spits C, Sermon K et al. (2006) Single-cell chromosomal imbalances detection by array CGH. Nucleic Acids Res 34: e68CrossRefGoogle Scholar
  17. 17.
    Mastenbroek S, Twisk M, Van Echten-Arends J et al. (2007) In vitro fertilization with preimplantation genetic screening. N Engl J Med 357: 9–17PubMedCrossRefGoogle Scholar
  18. 18.
    Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4: 448–456PubMedCrossRefGoogle Scholar
  19. 19.
    Piotrowski A, Bruder CE, Andersson R et al. (2008) Somatic mosaicism for copy number variation in differentiated human tissues. Hum Mutat [Epub ahead of print]Google Scholar
  20. 20.
    Redon R, Ishikawa S, Fitch KR et al. (2006) Global variation in copy number in the human genome. Nature 444: 444–454PubMedCrossRefGoogle Scholar
  21. 21.
    Schardt JA, Meyer M, Hartmann CH et al. (2005) Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell 8: 227–239PubMedCrossRefGoogle Scholar
  22. 22.
    Schmidt-Kittler O, Ragg T, Daskalakis A et al. (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA 100: 7737–7742PubMedCrossRefGoogle Scholar
  23. 23.
    Sebat J, Lakshmi B, Troge J et al. (2004) Large-scale copy number polymorphism in the human genome. Science 305: 525–528PubMedCrossRefGoogle Scholar
  24. 24.
    Sher G, Keskintepe L, Keskintepe M et al. (2007) Oocyte karyotyping by comparative genomic hybridization provides a highly reliable method for selecting „competent“ embryos, markedly improving in vitro fertilization outcome: a multiphase study. Fertil Steril 87: 1033–1040 PubMedCrossRefGoogle Scholar
  25. 25.
    Speicher MR, Du Manoir S, Schröck E et al. (1993) Molecular cytogenetic analysis of formalin-fixed, paraffin-embedded solid tumors by comparative genomic hybridization after universal DNA-amplification. Hum Mol Genet 2: 1907–1914PubMedCrossRefGoogle Scholar
  26. 26.
    Stoecklein NH, Hosch SB, Bezler M et al. (2008) Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell 13: 441–453PubMedCrossRefGoogle Scholar
  27. 27.
    Telenius H, Pelmear AH, Tunnacliffe A et al. (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4: 257–263PubMedCrossRefGoogle Scholar
  28. 28.
    Ullmann R (2008) Strukturelle Genomvarianten – Ausmaß, Entstehung und phänotypische Konsequenzen. Med Genet 4Google Scholar
  29. 29.
    Voullaire L, Wilton L, Slater H et al. (1999) Detection of aneuploidy in single cells using comparative genomic hybridization. Prenat Diagnosis 19: 846–851CrossRefGoogle Scholar
  30. 30.
    Wells D, Sherlock JK, Handyside AH et al. (1999) Detailed chromosomal and molecular genetic analysis of single cells by whole genome amplification and comparative genomic hybridisation. Nucleic Acids Res 27: 1214–1218PubMedCrossRefGoogle Scholar
  31. 31.
    Youssoufian H, Pyeritz RE (2002) Mechanisms and consequences of somatic mosaicism in humans. Nat Rev Genet 3: 748–758PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut für HumangenetikMedizinische Universität GrazGrazÖsterreich

Personalised recommendations