medizinische genetik

, Volume 20, Issue 4, pp 395–400 | Cite as

Array-CGH für die Analyse von Tumorgenomen

Schwerpunkt
  • 49 Downloads

Zusammenfassung

Durch Array-CGH („comparative genomic hybridization“) können genomweit Kopienzahlveränderungen mit hoher Auflösung erfasst werden. In der letzten Dekade zeigte sich, dass diese in Tumorgenomen häufig und in größerer Anzahl vorliegen können. Über Abweichungen im Array-CGH-Profil einer Tumor-DNA können Tumorsuppressor- oder Protoonkogene kartiert werden, sodass krebsrelevante Gene identifiziert werden konnten. Weiterhin werden Aberrationsmuster erfasst, was zur molekularen Subklassifikation von Tumortypen mit diagnostischer Bedeutung führte. Auch zur Identifizierung neuer prognostischer Marker konnten Array-CGH-Analysen beitragen. In Zukunft werden eine Datenbewertung durch Einbeziehung von Analysen auf anderen molekularen Ebenen und eine gezielte Anwendung mit chromosomen- oder tumorspezifischen Mikroarrays wichtig sein.

Schlüsselwörter

Array-CGH Tumorsuppressorgen Protoonkogen Molekulare Subklassifikation Prognostischer Marker 

Array CGH for the analysis of tumor genomes

Abstract

Array comparative genomic hybridization (array CGH) allows the genome-wide analysis of copy number changes at a high resolution. In the last decade, such copy number aberrations have been found frequently and in large quantities in tumor genomes. Alterations in the array CGH profile of tumor DNA indicate the location of tumor suppressor or proto-oncogenes, thereby enabling identification of cancer-relevant genes. In addition, patterns of aberrations have been detected that allow the molecular subclassification of certain tumor types with diagnostic significance. Array CGH analyses have also been instrumental in identifying new prognostic markers. In the future, data evaluation by integrated approaches, including other molecular levels and the selective use of chromosome and tumor-specific microarrays, will be of particular importance.

Keywords

Array CGH Tumor suppressor gene Proto-oncogene Molecular subclassification Prognostic marker 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Albertson DG, Ylstra B, Segraves R et al. (2000) Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat Genet 25: 144–146PubMedCrossRefGoogle Scholar
  2. 2.
    Callagy G, Pharoah P, Chin SF et al. (2005) Identification and validation of prognostic markers in breast cancer with the complementary use of array-CGH and tissue microarrays. J Pathol 205: 388–396PubMedCrossRefGoogle Scholar
  3. 3.
    Campbell PJ, Stephens PJ, Pleasance ED et al. (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 40: 722–729PubMedCrossRefGoogle Scholar
  4. 4.
    Ehrbrecht A, Müller U, Wolter M et al. (2006) Comprehensive genomic analysis of desmoplastic medulloblastomas: identification of novel amplified genes and separate evaluation of the different histological components. J Pathol 208: 554–563PubMedCrossRefGoogle Scholar
  5. 5.
    Fensterer H, Radlwimmer B, Sträter J et al.; EORTC Gastrointestinal (GI) Group (2007) Matrix-comparative genomic hybridization from multicenter formalin-fixed paraffin-embedded colorectal cancer tissue blocks. BMC Cancer 7: 58PubMedCrossRefGoogle Scholar
  6. 6.
    Hoischen A, Ehrler M, Fassunke J et al. (2008) Comprehensive characterization of genomic aberrations in gangliogliomas by CGH, array-based CGH and interphase FISH. Brain Pathol 18: 326–337PubMedCrossRefGoogle Scholar
  7. 7.
    Howarth KD, Blood KA, Ng BL et al. (2008) Array painting reveals a high frequency of balanced translocations in breast cancer cell lines that break in cancer-relevant genes. Oncogene 27: 3345–3359PubMedCrossRefGoogle Scholar
  8. 8.
    Hummel M, Bentink S, Berger H et al.; Molecular Mechanisms in Malignant Lymphomas Network Project of the Deutsche Krebshilfe (2006) A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med 354: 2419–2430PubMedCrossRefGoogle Scholar
  9. 9.
    Mendrzyk F, Radlwimmer B, Joos S et al. (2005) Genomic and protein expression profiling identifies CDK6 as novel independent prognostic marker in medulloblastoma. J Clin Oncol 23: 8853–8862PubMedCrossRefGoogle Scholar
  10. 10.
    Paris PL, Andaya A, Fridlyand J et al. (2004) Whole genome scanning identifies genotypes associated with recurrence and metastasis in prostate tumors. Hum Mol Genet 13: 1303–1313PubMedCrossRefGoogle Scholar
  11. 11.
    Pfister S, Janzarik WG, Remke M et al. (2008) BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 118: 1739–1749PubMedCrossRefGoogle Scholar
  12. 12.
    Pinkel D, Segraves R, Sudar D et al. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20: 207–211PubMedCrossRefGoogle Scholar
  13. 13.
    Rücker FG, Bullinger L, Schwaenen C et al. (2006) Disclosure of candidate genes in acute myeloid leukemia with complex karyotypes using microarray-based molecular characterization. J Clin Oncol 24: 3887–3894PubMedCrossRefGoogle Scholar
  14. 14.
    Schwaenen C, Nessling M, Wessendorf S et al. (2004) Automated array-based genomic profiling in chronic lymphocytic leukemia: development of a clinical tool and discovery of recurrent genomic alterations. Proc Natl Acad Sci USA 101: 1039–1044PubMedCrossRefGoogle Scholar
  15. 15.
    Sjöblom T, Jones S, Wood LD et al. (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314: 268–274PubMedCrossRefGoogle Scholar
  16. 16.
    Solinas-Toldo S, Lampel S, Stilgenbauer S et al. (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20: 399–407PubMedCrossRefGoogle Scholar
  17. 17.
    Steinemann D, Cario G, Stanulla M et al. (2008) Copy number alterations in childhood acute lymphoblastic leukemia and their association with minimal residual disease. Genes Chromosomes Cancer 47: 471–480PubMedCrossRefGoogle Scholar
  18. 18.
    Weber RG, Hoischen A, Ehrler M et al. (2007) Frequent loss of chromosome 9, homozygous CDKN2A/p14(ARF)/CDKN2B deletion and low TSC1 mRNA expression in pleomorphic xanthoastrocytomas. Oncogene 26: 1088–1097PubMedCrossRefGoogle Scholar
  19. 19.
    Zardo G, Tiirikainen MI, Hong C et al. (2002) Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat Genet 32: 453–458PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut für HumangenetikRheinische Friedrich-Wilhelms-UniversitätBonnDeutschland

Personalised recommendations