Advertisement

Kompression der Vertebralarterien bei Kopfrotation—eine mögliche Ursache des plötzlichen Säuglingstodes?

  • K. H. Deeg
  • W. Alderath
Article

Zussamenfassung

Eine lageabhängige Minderperfusion des Hirnstamms mit nachfolgenden zentralen Regulationsstörungen ist möglicherweise eine Ursache des plötzlichen Säuglingstodes. Zur Klärung dieser Frage wurden dopplersonographische Flußmessungen in der A. basilaris und in beiden Vertebralarterien in Abhängigkeit von Körperlage (Rückenlage, Bauchlage) und Kopfposition (Mittelstellung, Rotation nach links und rechts) durchgeführt. Die Untersuchungen erfolgten mit den Computersonographiegeräten XP 10, Aspen und Sequoia der Firma Acuson mit einer Frequenz von 5 MHz. Aus dem Flu\profil wurde die maximale und mittlere Flußgescheindigkeit ermittelt. Untersucht wurden 39 Säuglinge (Alter 10,6±10,2 Wochen) mit anscheinend lebensbedrohlichen Ereignissen (ALE) und 68 gesunde Säuglinge (Alter 3,7±4,1 Wochen), die als Kontrollkollektiv dienten. Im Kontrollkollektiv war die Blutströmung in den Hirnbasisarterien unabhängig von der Körperlage und Kopfposition. Bei 41% der ALE-Patienten fiel die Blutströmung in der kontralateralen Vertebralarterie bei Kopfrotation ab. Bei 23% kam es zusätzlich zu einem Abfall der Blutströmung in der A. basilaris. Die Veränderungen waren in Bauchlage ausgeprägter als in Rückenlage. Der Abfall der Blutströmung im vertebrobasilären System kommt durch Kompression der kontralateralen Vertebralarterie am kraniozervikalen Übergang zustande. Ein nachfolgender Abfall der Durchblutung des Hirnstammes könnte somit eine Ursache des plötzlichen Säuglingstods sein.

Schlüsselwörter

Hirnstamm Minderperfusion Hirnbasisarterien Dopplersonographie Keywords brainstem hypoperfusion basal brain arteries Doppler sonography 

Compression of the vertebral arteries during head rotation—a possible cause of sudden infant death?

Summary

A position dependent hypoperfusion of the brainstem is probably a cause of Sudden Infant Death. We performed Doppler sonographic flow measurements in the basilar and both vertebral arteries in prone and supine position with the head in the midline (neutral position) and after rotation to the right and left side. The investigations were performed with the Computersonographic units XP 10, Aspen and Sequoia (Acuson) with a 5 MHz transducer. From the flow profile the peak systolic and time average flow velocity were calculated. 39 patients (age 10,6±10,2 weeks) with apparently life threatening events (ALTE) and 68 healthy infants (age, 3,7±4,1 weeks) who served as a control group were investigated. In the control group the flow velocities within the vertebrobasilar system were independent of body position and head rotation. In 41% of patients with ALTE blood flow velocities in the contralateral vertebral artery dropped below 50% during rotation of the head. In 23% of patients with ALTE additionally flow velocities in the basilar artery decreased under 50% of the values measured in neutral position. Flow alterations were more pronounced in prone than in supine position. The decrease of blood flow within the vertebrobasilar system is caused by compression of the contralateral vertebral artery at the craniocervical junction. A following decrease of blood flow to the brainstem is probably a cause of sudden infant death.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Becker LE, Takashima S: Chronic hypoventilation a lopment of brain stem gliosis. Neuropediatrics 10 1985.Google Scholar
  2. [2]
    Deeg KH, Rupprecht T: Pulsed Doppler sonographic ment of normal values for the flow velocities in the int arteries of healthy newborns. Pediatr Radiol 19:71–78Google Scholar
  3. [3]
    Deeg KH, Alderath W, Bettendorf U: Basilarisinsuf eine mögliche Ursache des plötzlichen Kindstods? U. in Med 19:250–258, 1998.Google Scholar
  4. [4]
    Gilles FH, Bina M, Sotrel A: Infantile atlantooccipital ty. Am J Dis Child 133:29–37, 1979.Google Scholar
  5. [5]
    Jorch G: Plötzlicher Kindstod. Monatsschr Kin 142:137–147, 1994.Google Scholar
  6. [6]
    Jorch G, Schmidt-Troschke S, Bajanowski T, Heil Findeisen M, Nowack C, Rabe G, Freislederer A, Bl B, Harms E: Epidemiologische Risikofaktoren des pl Kindstods. Monatsschr Kinderheilkd 142:45–51, 1994Google Scholar
  7. [7]
    Kinney HC, Burger PC, Harrell FE, Hudson RP: gliosis” in the medulla oblongata of victims of the st fant death syndrome. Pediatrics 72:181–187, 1983.PubMedGoogle Scholar
  8. [8]
    Pamphlett R, Raisanen J, Kum-Jew S: Vertebral art pression resulting from head movement. A possible sudden infant death syndrome. Pediatrics 103:460–46Google Scholar
  9. [9]
    Saternus KS, Adam G: Der plötzliche Kindstod. Po Flußmessungen an den großen Halsgefäßen. zum Nac lageabhängigen zerebralen Hypoxämie. Dtsch Mechenschr 8:297–303, 1985.Google Scholar
  10. [10]
    Saternus KS: How cerebral perfusion is related to studo death. In: Andler W, Schläfke ME, Trowitzsch E (Hplötzliche Kindstod. Acron, Berlin New York, pp 50-Google Scholar
  11. [11]
    Saternus KS, Koebke J, v. Tamaska L: Neck exten cause of SIDS. Forensic Science International 31: 1986.Google Scholar
  12. [2]
    American Thoracic Society: Standards and indications for cardiopulmonary sleep studies in children. Am. J. Respir. Care Med. 153:866–878, 1996.Google Scholar
  13. [3]
    Curzi-Dascalova L, Mirmiran M: Manual of methods for recording and analyzing sleep-wakefulness states in preterm and full-term infants. INSERM, Paris 1996.Google Scholar
  14. [4]
    DeHaan R, Patrick J, Chess GF, Jaco NT: Definition of sleep state in the newborn infant by heart rate analysis. Am J Obstet Gynecol 27(7): 53–8, 1977.Google Scholar
  15. [5]
    Dement W, Kleitman N: Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming. Electroenceph Clin Neurophysiol 9:673–690, 1957.CrossRefPubMedGoogle Scholar
  16. [6]
    Flores Guevara R, Sternberg B, Peirano P: Respiratory pauses and periodic breathing assessed by cardio-pneumography in normal infants and SIDS-siblings. Neuropediatrics 17:59–62, 1986.Google Scholar
  17. [7]
    Gibbs FA, Gibbs EL: Atlas of Electroencephalography, Vol. 1. Addison-Wesley, Cambridge MA, 1950.Google Scholar
  18. [8]
    Haddad GG, Jeng HJ, Lai TL, Mellins RB: Determination of sleep state in infants using respiratory variability. Pediatr Res 21:556–562, 1987.PubMedGoogle Scholar
  19. [9]
    Harper RM, Schechtman VL, Kluge K: Machine classification of infant sleep state using cardiorespiratory measures. Electroenceph Clin Neurophysiol 67:379–387, 1987.PubMedCrossRefGoogle Scholar
  20. [10]
    IFSECN. A glossary of terms commonly used by clinical electroencephalographers. Electroenceph Clin Neurophysiol 37: 538–548, 1974.CrossRefGoogle Scholar
  21. [11]
    Jankel WR, Niedermeyer E: Sleep spindles. J Clin Neurophysiol 2(1):1–35, 1985.PubMedCrossRefGoogle Scholar
  22. [12]
    Jasper HH (Committee Chairman): The ten twenty electrode system of the International Federation. Electroenceph Clin Neurophysiol 10:371, 1958.Google Scholar
  23. [13]
    Kirjavainen T, Cooper D, Polo O, Sullivan CE: Respiratory and body movements as indicators of sleep stage and wakefulness in infants and young children. J Sleep Res 5(3): 186–94, 1996.PubMedCrossRefGoogle Scholar
  24. [14]
    Kubicki S, Herrmann WM, Scheuler W: Kritische Bemerkungen zu den Regeln von Rechtschaffen und Kales über die visuelle Auswertung von EEG-Schlafableitungen. Z EEG-EMG 13: 51–60, 1982.Google Scholar
  25. [15]
    Loomis AL, Harvey EN, Hobart GA: Cerebral states during sleep as studied by human brain potentials. J Exp Psychol 21: 127–144, 1937.CrossRefGoogle Scholar
  26. [16]
    Louis J, Zhang JX, Revol M, Debilly G, Challamel MJ: Ontogenesis of nocturnal organization of sleep spindles: a longitudinal study during the first 6 months of life. Electroenceph Clin Neurophysiol 83(5): 289–96, 1992.PubMedCrossRefGoogle Scholar
  27. [17]
    Niedermeyer E, Lopes da Silva F: Electroencephalography—Basic principles, clinical application, and related fields. 3. ed. Williams & Wilkins, Baltimore, Philadelphia, Hong Kong, London, Munich, Syndey, Tokyo, pp 153–191, 1992.Google Scholar
  28. [18]
    Parmelee AH, Akiyama Y, Schultz MA, Wenner WH, Schulte FJ, Stern WE: The electroencephalogram in active and quiet sleep in infants. In: Kellaway P, Petersen I: Clinical electroencephalography in children. Grune & Stratton New York (Almquist & Wiksell Stockholm) pp 77–88, 1968.Google Scholar
  29. [19]
    Petersén I, Olofson O: The development of the electroencephalogram in normal children from the age of 1 through 15. Neuropaediatrie 2, 247–304, 1971.CrossRefGoogle Scholar
  30. [20]
    Prechtl HFR: Problems of behavioral studies in the newborn infant. In: Lehrman DS, Hinde RA, Shaw E: Advances in the study of behavior. Academic Press, New York, London, Vol. 1 pp 75–98, 1965.Google Scholar
  31. [21]
    Rechtschaffen A, Kales A (eds), Berger RJ, Dement WC, Jacobson A, Johnson LC, Jouvet M, Monroe LJ, Oswald I, Roffwarg HP, Roth B, Walter RD: A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. Public Health Service, US Government Printing Office, Washington, D.C., 1968.Google Scholar
  32. [22]
    Sadeh A, Hauri PJ, Kripke DF, Lavie P: The role of actigraphy in the evaluation of sleep disorders. Sleep 18, 288–302, 1995.PubMedGoogle Scholar
  33. [23]
    Samson-Dollfus D, Nogues B, Delagree E: EEG-recording during drowsiness in normal babies from 2 to 12 months of age. Electroenceph Clin Neurophysiol 52: 58P (abstr.), 1981.Google Scholar
  34. [24]
    Schmid RG, Tirsch WS: Klinische Elektroenzephalographie des Kindes-und Jugendalters. Ein Atlas der EEG-Aktivität: Altersbezogene Normkurven und Pathologie. Springer, Berlin, Heidelberg; New York; pp 52–120, 1995.Google Scholar
  35. [25]
    Scholle S, Kemper A, Glaser S, Rieger B, Zwacka G: Methodical aspects of polysomnographic investigations in childhood: I. Arm and leg movements and EEG arousals as diagnostic markers of sleep. Somnologie 4:184–188, 1998.CrossRefGoogle Scholar
  36. [26]
    Scholle S, Zwacka G: Schlafbewertung im Säuglings-, Kleinkindes- und Kindesalter. Klin Pädiatrie 208:285–289, 1996.Google Scholar
  37. [27]
    Sheldon HS, Riter S, Detrojan M: Atlas of sleep medicine in infants and children. Futura Publishing Company, Inc., Armonk, NY, 1999.Google Scholar
  38. [28]
    Tanguay PE, Ornitz EM, Kaplan A, Bozzo ES: Evolution of sleep spindles in childhood. Electroenceph Clin Neurophysiol 38(2):175–81, 1975.PubMedCrossRefGoogle Scholar

Copyright information

© Blackwell Wissenschafts-Verlag 1999

Authors and Affiliations

  1. 1.Klinikum Bamberg, KinderklinikBamberg

Personalised recommendations