Advertisement

Somnologie

, Volume 23, Issue 4, pp 291–298 | Cite as

Schlafapnoe – ein Risikofaktor für Malignome?

  • Sarah Driendl
  • Michael Arzt
  • Stefan StadlerEmail author
Übersichten
  • 26 Downloads

Zusammenfassung

Hintergrund

Die obstruktive Schlafapnoe (OSA) ist ein wichtiger Risikofaktor für kardiovaskuläre, metabolische und neurologische Erkrankungen. Zudem gibt es Hinweise darauf, dass OSA durch intermittierende Hypoxie und Schlaffragmentierung Einfluss auf Genese, Progression und Metastasierung von Malignomen nimmt. Als mögliche Pathomechanismen werden oxidativer Stress, systemische Inflammation, Angiogenese durch HIF-1/2 und Immundefizienz diskutiert.

Ziel der Arbeit

Ziel der vorliegenden Übersichtsarbeit ist es, die derzeit verfügbare Evidenz bezüglich Auswirkungen von OSA auf Tumorinzidenz, Verlauf von Tumorerkrankungen und Mortalität wiederzugeben.

Material und Methoden

Literaturrecherche in PubMed und Ovid-Datenbank bis einschließlich Juni 2019.

Ergebnisse

Experimentelle Studien weisen auf einen potenziellen Einfluss der OSA durch intermittierende Hypoxie und Schlaffragmentierung auf Genese, Progression und Metastasierung eines Tumors hin. Klinische Studien zeigen widersprüchliche Ergebnisse, ein Großteil der Studien legt aber einen Zusammenhang zwischen der OSA und Krebsinzidenz bzw. -mortalität nahe.

Diskussion

Bisherige Studien lassen einen Zusammenhang zwischen OSA und Malignomen vermuten. Weitere Untersuchungen zu Pathomechanismen und Interventionsmöglichkeiten sind notwendig.

Schlüsselwörter

Oxidativer Stress Schlafbezogene Atmungsstörung Tumor Intermittierende Hypoxie Tumorgenese 

Sleep apnoea—a risk factor for malignoma?

Abstract

Background

Obstructive sleep apnoea (OSA) is a major risk factor for cardiovascular, metabolic and neurological diseases. There is evidence that via intermittent hypoxia and sleep fragmentation, OSA has influence on the genesis, progression and metastasis of existing tumours. Possible pathomechanisms are oxidative stress, systemic inflammation, angiogenesis via HIF-1/2 and immunodeficiency.

Objectives

The objective of this review is to give an overview of the currently available evidence on the effects of OSA on tumour incidence, course of the disease and mortality.

Materials and methods

Literature search in PubMed and the Ovid database up to and including June 2019.

Results

Experimental studies suggest a potential impact of OSA via intermittent hypoxia and sleep fragmentation on the genesis, progression and metastasis of a tumour. Clinical studies show contradictory results; a majority suggests an association between OSA and cancer incidence and mortality.

Discussion

Previous studies suggest an association between OSA and cancer. Further investigations in terms of pathophysiology and intervention options are necessary.

Keywords

Oxidative stress Sleep-disordered breathing Neoplasm Hypoxia, intermittent Carcinogenesis 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

S. Driendl, M. Arzt und S. Stadler geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Malhotra A, White DP (2002) Obstructive sleep apnoea. Lancet 360(9328):237–245CrossRefGoogle Scholar
  2. 2.
    Jordan AS, McSharry DG, Malhotra A (2013) Adult obstructive sleep apnoea. Lancet 383(9918):736–747CrossRefGoogle Scholar
  3. 3.
    Muz B, La de Puente P, Azab F et al (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl) 3:83–92CrossRefGoogle Scholar
  4. 4.
    Yamauchi M, Nakano H, Maekawa J et al (2005) Oxidative stress in obstructive sleep apnea. Chest 127(5):1674–1679CrossRefGoogle Scholar
  5. 5.
    Gozal D, Farré R, Nieto FJ (2015) Putative links between sleep apnea and cancer: from hypotheses to evolving evidence. Chest 148(5):1140–1147CrossRefGoogle Scholar
  6. 6.
    Gozal D, Farré R, Nieto FJ (2016) Obstructive sleep apnea and cancer: epidemiologic links and theoretical biological constructs. Sleep Med Rev 27:43–55CrossRefGoogle Scholar
  7. 7.
    McNicholas WT (2009) Obstructive sleep apnea and inflammation. Prog Cardiovasc Dis 51(5):392–399CrossRefGoogle Scholar
  8. 8.
    Lévy P, Pépin J‑L, Arnaud C et al (2008) Intermittent hypoxia and sleep-disordered breathing: current concepts and perspectives. Eur Respir J 32(4):1082–1095CrossRefGoogle Scholar
  9. 9.
    Marshall NS, Wong KKH, Cullen SRJ et al (2014) Sleep apnea and 20-year follow-up for all-cause mortality, stroke, and cancer incidence and mortality in the Busselton Health Study cohort. J Clin Sleep Med 10(4):355–362PubMedPubMedCentralGoogle Scholar
  10. 10.
    Campos-Rodriguez F, Martinez-Garcia MA, Martinez M et al (2013) Association between obstructive sleep apnea and cancer incidence in a large multicenter Spanish cohort. Am J Respir Crit Care Med 187(1):99–105CrossRefGoogle Scholar
  11. 11.
    Brenner R, Kivity S, Peker M et al (2018) Increased risk for cancer in young patients with severe obstructive sleep apnea. Respiration 97(1):15–23CrossRefGoogle Scholar
  12. 12.
    Kendzerska T, Leung RS, Hawker G et al (2014) Obstructive sleep apnea and the prevalence and incidence of cancer. CMAJ 186(13):985–992CrossRefGoogle Scholar
  13. 13.
    Christensen AS, Clark A, Salo P et al (2013) Symptoms of sleep disordered breathing and risk of cancer: a prospective cohort study. Sleep 36(10):1429–1435CrossRefGoogle Scholar
  14. 14.
    Chang W‑P, Liu M‑E, Chang W‑C et al (2014) Sleep apnea and the subsequent risk of breast cancer in women: a nationwide population-based cohort study. Sleep Med 15(9):1016–1020CrossRefGoogle Scholar
  15. 15.
    Chen J‑C, Hwang J‑H (2014) Sleep apnea increased incidence of primary central nervous system cancers: a nationwide cohort study. Sleep Med 15(7):749–754CrossRefGoogle Scholar
  16. 16.
    Fang H‑F, Miao N‑F, Chen C‑D et al (2015) Risk of cancer in patients with insomnia, parasomnia, and obstructive sleep apnea: a nationwide nested case-control study. J Cancer 6(11):1140–1147CrossRefGoogle Scholar
  17. 17.
    Gozal D, Ham SA, Mokhlesi B (2016) Sleep apnea and cancer: analysis of a nationwide population sample. Sleep 39(8):1493–1500CrossRefGoogle Scholar
  18. 18.
    Sillah A, Watson NF, Schwartz SM et al (2018) Sleep apnea and subsequent cancer incidence. Cancer Causes Control 29(10):987–994CrossRefGoogle Scholar
  19. 19.
    Richmond RC, Anderson EL, Dashti HS et al (2019) Investigating causal relations between sleep traits and risk of breast cancer in women: mendelian randomisation study. BMJ 365:l2327CrossRefGoogle Scholar
  20. 20.
    Vogtmann E, Levitan EB, Hale L et al (2013) Association between sleep and breast cancer incidence among postmenopausal women in the Women’s Health Initiative. Sleep 36(10):1437–1444CrossRefGoogle Scholar
  21. 21.
    Nieto FJ, Peppard PE, Young T et al (2012) Sleep-disordered breathing and cancer mortality: results from the Wisconsin Sleep Cohort Study. Am J Respir Crit Care Med 186(2):190–194CrossRefGoogle Scholar
  22. 22.
    Martínez-García MA, Campos-Rodriguez F, Durán-Cantolla J et al (2014) Obstructive sleep apnea is associated with cancer mortality in younger patients. Sleep Med 15(7):742–748CrossRefGoogle Scholar
  23. 23.
    Martínez-García M‑A, Martorell-Calatayud A, Nagore E et al (2014) Association between sleep disordered breathing and aggressiveness markers of malignant cutaneous melanoma. Eur Respir J 43(6):1661–1668CrossRefGoogle Scholar
  24. 24.
    Parks SK, Cormerais Y, Pouysségur J (2017) Hypoxia and cellular metabolism in tumour pathophysiology. J Physiol 595(8):2439–2450CrossRefGoogle Scholar
  25. 25.
    Almendros I, Wang Y, Gozal D (2014) The polymorphic and contradictory aspects of intermittent hypoxia. Am J Physiol Lung Cell Mol Physiol 307(2):L129–L140CrossRefGoogle Scholar
  26. 26.
    Gallego-Martin T, Farré R, Almendros I et al (2017) Chronic intermittent hypoxia mimicking sleep apnoea increases spontaneous tumorigenesis in mice. Eur Respir J 49(2):1602111CrossRefGoogle Scholar
  27. 27.
    Almendros I, Montserrat JM, Ramirez J et al (2012) Intermittent hypoxia enhances cancer progression in a mouse model of sleep apnoea. Eur Respir J 39(1):215–217CrossRefGoogle Scholar
  28. 28.
    Almendros I, Montserrat JM, Torres M et al (2012) Obesity and intermittent hypoxia increase tumor growth in a mouse model of sleep apnea. Sleep Med 13(10):1254–1260CrossRefGoogle Scholar
  29. 29.
    Almendros I, Wang Y, Becker L et al (2014) Intermittent hypoxia-induced changes in tumor-associated macrophages and tumor malignancy in a mouse model of sleep apnea. Am J Respir Crit Care Med 189(5):593–601CrossRefGoogle Scholar
  30. 30.
    Campillo N, Torres M, Vilaseca A et al (2017) Role of cyclooxygenase‑2 on intermittent hypoxia-induced lung tumor malignancy in a mouse model of sleep apnea. Sci Rep 7:44693CrossRefGoogle Scholar
  31. 31.
    Perini S, Martinez D, Montanari CC et al (2016) Enhanced expression of melanoma progression markers in mouse model of sleep apnea. Rev Port Pneumol 22(4):209–213PubMedGoogle Scholar
  32. 32.
    Almendros I, Khalyfa A, Trzepizur W et al (2016) Tumor cell malignant properties are enhanced by circulating exosomes in sleep apnea. Chest 150(5):1030–1041CrossRefGoogle Scholar
  33. 33.
    Rofstad EK, Gaustad J‑V, Egeland TAM et al (2010) Tumors exposed to acute cyclic hypoxic stress show enhanced angiogenesis, perfusion and metastatic dissemination. Int J Cancer 127(7):1535–1546CrossRefGoogle Scholar
  34. 34.
    Eubank T, Sherwani S, Peters S et al (2013) Intermittent hypoxia augments melanoma tumor metastases in a mouse model of sleep apnea. A109. Sleep Didordered Breathing: Cardiovascular, metabolic, and neurocognitive outcomes, S A2302–A2302Google Scholar
  35. 35.
    Li L, Ren F, Qi C et al (2018) Intermittent hypoxia promotes melanoma lung metastasis via oxidative stress and inflammation responses in a mouse model of obstructive sleep apnea. Respir Res 19(1):28CrossRefGoogle Scholar
  36. 36.
    Hakim F, Wang Y, Zhang SXL et al (2014) Fragmented sleep accelerates tumor growth and progression through recruitment of tumor-associated macrophages and TLR4 signaling. Cancer Res 74(5):1329–1337CrossRefGoogle Scholar
  37. 37.
    Hunyor I, Cook KM (2018) Models of intermittent hypoxia and obstructive sleep apnea: molecular pathways and their contribution to cancer. Am J Physiol Regul Integr Comp Physiol 315(4):R669–R687CrossRefGoogle Scholar
  38. 38.
    Chen Y, Tan F, Wei L et al (2018) Sleep duration and the risk of cancer: a systematic review and meta-analysis including dose-response relationship. BMC Cancer 18(1):1149CrossRefGoogle Scholar
  39. 39.
    Peppard PE, Young T, Barnet JH et al (2013) Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 177(9):1006–1014CrossRefGoogle Scholar
  40. 40.
    Dörhöfer L, Lammert A, Krane V et al (2013) Study design of DIACORE (DIAbetes COhoRtE)—a cohort study of patients with diabetes mellitus type 2. BMC Med Genet 14:25CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik und Poliklinik für Innere Medizin IIUniversitätsklinikum RegensburgRegensburgDeutschland

Personalised recommendations