Advertisement

Somnologie

, Volume 20, Issue 2, pp 113–118 | Cite as

Predictors of obstructive sleep apnea

Anthropometric measurements and their significance
  • Lisa ProchnowEmail author
  • Sandra Zimmermann
  • Thomas Penzel
Schwerpunkt

Abstract

Background

A patient’s condition, such as obesity, plays a key role in the pathophysiology of obstructive sleep apnea (OSA). This study focuses on morphometric data that might be associated with the apnea–hypopnea index (AHI) and could therefore be used to predict OSA in order to better select patients for cardiorespiratory polysomnography (PSG).

Methods

Data of 110 patients with suspected OSA in the sleep center outpatient department were analyzed retrospectively. The data included morphometric measurements such as neck, waist, and hip circumference; weight; body size; age; and Epworth Sleepiness Scale (ESS). The results of the patients’ overnight polygraphy, the AHI, completed the data.

Results

Neck and waist circumference can predict the AHI (p < 0.01). Power of prediction was higher for both factors among male (p < 0.01) compared to female patients (p = 0.05). In the case of neck circumference, the threshold value is 40 cm. Neck circumferences of more than 40 cm are strongly associated with a higher AHI (p < 0.001).

Conclusion

It was possible to confirm the roles of waist and neck circumference as important parameters for a prediction model. Nevertheless, these parameters alone are not precise enough to completely neglect factors such as anatomic morphology in order to predict OSA and its severity.

Keywords

Polysomnography Obesity Body mass index Neck circumference Screening 

Prädiktoren für obstruktive Schlafapnoe

Anthropometrische Messungen und ihre Aussagekraft

Zusammenfassung

Hintergrund

Übergewicht und Adipositas spielen eine wichtige Rolle in der Pathophysiologie der obstruktiven Schlafapnoe (OSA). In dieser Studie werden morphometrische Daten auf eine mögliche Korrelation mit dem Apnoe-Hypopnoe-Index (AHI) untersucht und im Hinblick auf deren Verwendung zur Vorhersage von OSA bewertet. Dies könnte bei der Auswahl der Patienten für eine kardiorespiratorische Polysomnographie (PSG) hilfreich sein.

Methode

Retrospektiv wurden Daten von 110 Patienten mit Verdacht auf OSA in der schlafmedizinischen Ambulanz analysiert. Die Daten beinhalteten: Halsumfang, Hüftumfang, Taillenumfang, Gewicht, Körpergröße, Alter, Epworth Sleepiness Scale (ESS). Die Ergebnisse der Polygraphie der Patienten (AHI) vervollständigten die ausgewerteten Daten.

Ergebnisse

Halsumfang und Taillenumfang können eine Vorhersage über den AHI treffen (p < 0,01). Die Vorhersagekraft war für Männer in beiden Fällen höher (p < 0,01) als für Frauen (p = 0,05). Für den Halsumfang liegt der Grenzwert bei 40 cm. Ein Halsumfang über 40 cm ist stark assoziiert mit einem hohen AHI (p < 0,001).

Schlussfolgerung

Halsumfang und Taillenumfang wurden als wichtige Bestandteile eines Vorhersagemodells bestätigt. Dennoch sind diese Parameter allein nicht präzise genug. Für eine genauere Vorhersage von OSA und die Schwere von OSA können z. B. anatomische Korrelationen nicht außer Acht gelassen werden.

Schlüsselwörter

Polysomnographie Adipositas Body-Mass-Index Halsumfang Screening 

Notes

Acknowledgements

I wish to thank Kathrin Prochotta and all other medical assistants in the outpatient department for answering so many questions and for giving me clear guidance in the premises of the archive. Thank you, Fabienne Prochnow, for your support and for proofreading this article in particular. TP was supported by the project no. LQ1605 from the National Program of Sustainability II and FNUSA-ICRC (No. CZ.1.05/1.1.00/02.0123).

Compliance with ethical guidelines

Conflict of interest

L. Prochnow, S. Zimmermann, and T. Penzel state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or animals.

References

  1. 1.
    Chesson AL, Berry RB, Pack A (2003) Practice parameters for the use of portable monitoring devices in the investigation of suspected obstructive sleep apnea in adults. Sleep 26:907–913PubMedGoogle Scholar
  2. 2.
    Deflandre E, Degey S, Brichant JF, Poirrier R, Bonhomme V (2016) Development and validation of a morphologic obstructive sleep apnea prediction score: the DES-OSA score. Anesth Analg 122:363–372CrossRefPubMedGoogle Scholar
  3. 3.
    Degache F, Sforza E, Dauphinot V, Celle S, Garcin A, Collet P, Pichot V, Barthélémy JC, Roche F (2013) Relation of central fat mass to obstructive sleep apnea in the elderly. Sleep 36:501–507PubMedPubMedCentralGoogle Scholar
  4. 4.
  5. 5.
    Edmonds PJ, Edmonds LC (2015) A pilot study of the inability to fit hands around neck as a predictor of obstructive sleep apnea. N Am J Med Sci 7:553–557CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Friedman M, Tanyeri H, La Rosa M, Landsberg R, Vaidyanathan K, Pieri S, Caldarelli D (1999) Clinical predictors of obstructive sleep apnea. Laryngoscope 109:1901–1907CrossRefPubMedGoogle Scholar
  7. 7.
    Heinzer R, Vat S, Marques-Vidal P, Marti-Soler H, Andries D, Tobback N, Mooser V, Preisig M, Malhotra A, Waeber G, Vollenweider P, Tafti M, Haba-Rubio J (2015) Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir Med 3:310–318CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Johns MW (1991) A New Method for Measuring Daytime Sleepiness: The Epworth Sleepiness Scale. Sleep 14:540–545PubMedGoogle Scholar
  9. 9.
    Kushida CA, Efron B, Guilleminault C (1997) A predictive Morphometric model for the obstructive sleep apnea syndrome. Ann Intern Med 127:581–587CrossRefPubMedGoogle Scholar
  10. 10.
    Lindberg E, Carter N, Gislason T, Janson C (2001) Role of snoring and daytime sleepiness in occupational accidents. Am J Respir Crit Care Med 164:2031–2053CrossRefPubMedGoogle Scholar
  11. 11.
    Malhotra A, White DP (2002) Obstructive sleep apnea. Lancet 360:237–245CrossRefPubMedGoogle Scholar
  12. 12.
    Penzel T, Blau A, Garcia C, Schöbel C, Sebert M, Fietze I (2012) Portable monitoring in sleep apnea. Curr Respir Care Rep 1:139–145CrossRefGoogle Scholar
  13. 13.
    Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Mae Hla K (2013) Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 177:1006–1014CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Quassem A, Dallas P, Douglas K, Owens K, Starkey M, Holty JEC, Shekelle P (2014) Diagnosis of obstructive sleep apnea in adults: clinical practice guideline. Ann Intern Med 161:210–220CrossRefGoogle Scholar
  15. 15.
    Sahin M, Bilgen C, Tasbakan MS, Midilli R, Basoglu OK (2014) A clinical prediction formula for Apnea-Hypopnea index. Int J Otolaryngology 2014:1–4CrossRefGoogle Scholar
  16. 16.
    Terán-Santos J, Jimenez-Gomez A, Cordero-Guevara J (1999) The association between sleep apnea and the risk of traffic accidents. Cooperative Group Burgos-Santander. N Engl J Med 340:847–851CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Lisa Prochnow
    • 1
    Email author
  • Sandra Zimmermann
    • 1
  • Thomas Penzel
    • 1
    • 2
  1. 1.Charité Campus Mitte, Centre for Sleep MedicineCharité Universitätsmedizin BerlinBerlinGermany
  2. 2.International Clinical Research CenterSt. Anne’s University Hospital BrnoBrnoCzech Republic

Personalised recommendations