Methoden zur Analyse kardiorespiratorischer und kardiovaskulärer Kopplungen

  • A. Müller
  • M. Riedl
  • N. Wessel
  • J. Kurths
  • T. Penzel
Übersichten

Zusammenfassung

Die Analyse von Effekten, die auf Kopplungen zwischen und innerhalb verschiedener Systeme basieren, spielt eine wichtige Rolle in datengetriebenen Untersuchungen, wie sie in vielen Anwendungsgebieten praktiziert werden. Sie erlaubt einen tieferen Einblick in das Zusammenspiel einzelner Teilsysteme, z. B. in das Herz-Kreislauf-System. In dieser Arbeit sollen einige existierende Kopplungsmaße kurz vorgestellt und zusammengefasst werden. Besonderes Augenmerk liegt dabei auf ihrer Anwendbarkeit bei kardiovaskulären und kardiorespiratorischen Daten, die während des Schlafs aufgenommen wurden.

Schlüsselwörter

Kopplungsmaße Synchronisation Kardiorespiratorische Kopplung Schlaf Blutkreislauf 

Methods for the analysis of cardiorespiratory and cardiovascular coupling

Abstract

The analysis of effects from coupling within and between systems plays an important role in data-driven investigations as practiced in many scientific fields. It allows deeper insights into the mechanisms of interactions emerging between individual smaller systems when forming complex systems as in the human circulatory system. In this work, several existing coupling measures are briefly introduced and summarized. Special attention is paid to the application to cardiovascular and cardiorespiratory data measured during sleep.

Keywords

Coupling measures Synchronisation Cardiorespiratory coupling Sleep Blood circulation 

Literatur

  1. 1.
    Akaike H (1969) Fitting autoregressive models for prediction. Ann Inst Stat Math 2:243–247CrossRefGoogle Scholar
  2. 2.
    Ashkenazy Y, Lewkowicz M, Levitan J et al (2001) Scale-specific and scale-independent measures of heart rate variablity as risk indicators. EPL 53(6)709–715Google Scholar
  3. 3.
    Bartsch RP, Kantelhardt JW, Penzel T, Havlin S (2007) Experimental evidence for phase synchronization transitions in the human cardiorespiratory system. Phys Rev Lett 98:054102PubMedCrossRefGoogle Scholar
  4. 4.
    Blasius B, Huppert A, Stone L (1999) Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399:354–359PubMedCrossRefGoogle Scholar
  5. 5.
    Cammarota C, Rogora E (2006) Spectral and symbolic analysis of heart rate data during the tilt test. Phys Rev E 74 042903Google Scholar
  6. 6.
    Geweke J (1984) Measures of conditional linear dependence and feedback between time series. J Amer Statistical Assoc 79(388):907–915CrossRefGoogle Scholar
  7. 7.
    Glass L (2001) Synchronization and rhythmic processes in physiology. Nature 410:277–284PubMedCrossRefGoogle Scholar
  8. 8.
    Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438CrossRefGoogle Scholar
  9. 9.
    Hirsch JA, Bishop B (1981) Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Physiol 241(4):H620–H629PubMedGoogle Scholar
  10. 10.
    Hlavácková-Schindler K, Paluš M, Vejmelka M, Bhattacharya J (2007) Causality detection based on information-theoretic approaches in time series analysis. Physics Reports 441(1):1–46CrossRefGoogle Scholar
  11. 11.
    Ishiguro K, Otsu,N, Lungarella M, Kuniyoshi Y (2008) Comparison of nonlinear Granger causality extensions for low-dimensional systems. Phys Rev E 77:036217CrossRefGoogle Scholar
  12. 12.
    Ivanov PC, Nunes-Amaral L A et al (1998) Stochastic feedback and the regulation of biological rhythms. Europhys Lett 43(4):363–368PubMedCrossRefGoogle Scholar
  13. 13.
    Milton J G, Cabrera JL, Ohira T (2008) Unstable dynaical systems: delays, noise and control. Eur Phys Lett 83:48001CrossRefGoogle Scholar
  14. 14.
    Paluš M (2007) From nonlinearity to causality: statistical testing and inference of physical mechanisms underlying complex dynamics. Contemporary Physics 48(6):307–348CrossRefGoogle Scholar
  15. 15.
    Paluš M, Vejmelka M (2007) Directionality of coupling from bivariate time series: how to avoid false causalities and missed connections. Phys Rev E 75:056211CrossRefGoogle Scholar
  16. 16.
    Penzel T, Riedl M, Gapelyuk A et al (2012) Effect of CPAP therapy on daytime cardiovascular regulations in patients with obstructive sleep apnea. Comput Biol Med doi:10.1016/j.compbiomed.2011.09.001Google Scholar
  17. 17.
    Penzel T, Wessel N, Riedl M (2007) Cardiovascular and respiratory dynamics during normal and pathological sleep. Chaos 17:015116PubMedCrossRefGoogle Scholar
  18. 18.
    Pessenhofer H, Kenner T (1975) Zur Methodik der kontinuierlichen Bestimmung der Phasenbeziehung zwischen Herzschlag und Atmung. Pflügers Archiv 355:77–83PubMedCrossRefGoogle Scholar
  19. 19.
    Porta A, Baselli G, Rimoldi O et al (2000) Assessing baroreflex gain from spontaneous variability in conscious dogs: Role of causality and respiration. Amer J Phys Heart Circul Physiol 279:2558–2567Google Scholar
  20. 20.
    Raschke F, Bockelbrink W, Hildebrandt G (1977) Spectral analysis of momentary heart rate for examination of recovery during night sleep. In: Koella P, Levin P (eds) Sleep 1976. 3rd Europ Congr Sleep Res, Montpellier 1976; Karger, Basel S 298–301Google Scholar
  21. 21.
    Raschke F (1981) Die Kopplung zwischen Herzschlag und Atmung beim Menschen – Untersuchungen zur Frequenz- und Phasenkoordiantion mit neuen Verfahren der automatischen Analyse, M.D. Dissertation, Universität MarburgGoogle Scholar
  22. 22.
    Raschke F, Hildebrandt G (1982) Coupling of the cardiorespiratory control system by modulation and triggering. In: Kenner T, Busse R, Hinghofer-Szalkay H (eds), Cardiovascular System Dynamics – Models and Measurements. Plenum, New York S 533–542Google Scholar
  23. 23.
    Raschke F (1986) The hierarchical order of cardiovascular-respiratory coupling. Grossman P, Janssen KHL, Vaitl D (eds) Cardiorespiratory and Cardiosomatic Psychophysiology. Plenum, New YorkGoogle Scholar
  24. 24.
    Raschke F (1987) Coordination in the circulatory and respiratory systems. Resing L, an der Heiden U, Mackey MC (eds) Temporal Disorder in Human Oscillatory Systems. Springer, Berlin, S 152–158Google Scholar
  25. 25.
    Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques, and scoring system for sleep stages of human subjects. Public Health Service, U.S. Government Printing Office, Washington/DCGoogle Scholar
  26. 26.
    Rosenblum MG, Cimponeriu L, Bezerianos A et al (2002) Identification of coupling direction: application to cardiorespiratory interaction. Phys Rev E 65:041909CrossRefGoogle Scholar
  27. 27.
    Rosenblum MG, Kurths J, Pikovsky A et al. (1998) Synchronization in noisy systems and cardiorespiratory interaction. IEEE Eng Med Biol Mag 17(6):46–53PubMedCrossRefGoogle Scholar
  28. 28.
    Rosenblum M, Pikovsky AS (2001) Detecting direction of coupling in interacting oscillators. Phys Rev E 64:045202CrossRefGoogle Scholar
  29. 29.
    Riedl M, Suhrbier A, Malberg H (2008) Modeling the cardiovascular system using a nonlinear additive autoregressive model with exogenous input. Phys Rev E 78:011919CrossRefGoogle Scholar
  30. 30.
    Schäfer C, Rosenblum MG, Kurths J, Abel H-H (1998) Heartbeat synchronized with ventilation. Nature 392:239–240PubMedCrossRefGoogle Scholar
  31. 31.
    Schreiber T (2000) Information transfer. Phys Rev Lett 85:2CrossRefGoogle Scholar
  32. 32.
    Shannon CE (1948) A mathematical theory of communication. Bell Sys Tech J 27:379–423Google Scholar
  33. 33.
    Stefanovska A, Haken H, McClintock PVE et al (2000) Reversible transitions between synchronization states of the cardiorespiratory system. Phys Rev Lett 85(22):4831–4834PubMedCrossRefGoogle Scholar
  34. 34.
    Suhrbier A, Riedl M, Malberg H et al (2010) Cardiovascular regulation during sleep quantified by symbolic coupling traces. Chaos 20:045124PubMedCrossRefGoogle Scholar
  35. 35.
    Vejmelka M, Paluš M (2008) Inferring the directionality of coupling with conditional mutual information. Phys Rev E 77:026214CrossRefGoogle Scholar
  36. 36.
    Wessel N, Suhrbier A, Riedl M et al (2009) Detection of time-delayed interactions in biosignals using symbolic coupling traces. Eur Phys Lett 87:10004CrossRefGoogle Scholar
  37. 37.
    Ying-Cheng L, Kostelich EJ (2002) Detectability of dynamical coupling from delay-coordinate embedding of scalar time series. Phys Rev E 66:036217CrossRefGoogle Scholar
  38. 38.
    Zou C, Feng J (2009) Granger causality vs. Bayesian network inference: acomparative study, BMC Bioinformatics 10:122Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • A. Müller
    • 1
  • M. Riedl
    • 1
  • N. Wessel
    • 1
  • J. Kurths
    • 1
    • 3
    • 4
  • T. Penzel
    • 2
  1. 1.Institut für Physik, Kardiovaskuläre PhysikHumboldt-Universität zu BerlinBerlinDeutschland
  2. 2.Interdisziplinäres Schlafmedizinisches ZentrumCharité - Universitätsmedizin Berlin, Campus Charité MitteBerlinDeutschland
  3. 3.Potsdam-Institut für Klimafolgenforschung (PIK)PotsdamDeutschland
  4. 4.Institute for Complex Systems and Mathematical BiologyUniversity of AberdeenAberdeenGroßbritannien

Personalised recommendations